SEMI-DEVICE-INDEPENDENT CERTIFICATION OF

INDEFINITE CAUSAL ORDER

JESSICA BAVARESCO, MATEUS ARAÚJO, ČASLAV BRUKNER, MARCO TÚLIO QUINTINO

Quantum 3, 176 (2019) arXiv:1903.10526

ÖSTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN

Given a set of probability distributions (behaviour) $\{p(ab|xy)\}$

what conclusions can be taken from it by making different assumptions about how it was obtained?

MOTIVATION

 $p(ab|xy) = \operatorname{Tr}\left[\left(A_{a|x} \otimes B_{b|y}\right) \rho_{AB}\right]$

and

 $p(ab|xy) \neq \operatorname{Tr}\left[\left(A_{a|x} \otimes B_{b|y}\right) \rho_{\mathrm{SEP}}\right]$

 ρ_{AB} is entangled

 $p(ab|xy) = \operatorname{Tr}\left[\left(A_{a|x} \otimes B_{b|y}\right) \rho_{AB}\right]$

and

 $p(ab|xy) \neq \operatorname{Tr}\left[\left(A_{a|x} \otimes B_{b|y}\right) \rho_{\mathrm{SEP}}\right]$

DEVICE DEPENDENCE

DEVICE INDEPENDENT

DEVICE DEPENDENCE

DEVICE DEPENDENT

DEVICE DEPENDENCE

SEMI-DEVICE INDEPENDENT

EXAMPLE: ENTANGLEMENT

DEVICE DEPENDENT

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

ENTANGLEMENT WITNESS

EPR STEERING

BELL NONLOCALITY

INDEFINITE CAUSAL ORDER

• Most general operation in quantum mechanics: a set of instruments

• Most general operation in quantum mechanics: a set of instruments

$$\{I_{a|x}\}, I_{a|x} \in \mathcal{L}(\mathcal{H}^I \otimes \mathcal{H}^O)$$

 $x \in \{1, ..., I\}$ labels the instruments $a \in \{1, ..., O\}$ labels their outcomes

$$|_{x} \ge 0, \quad \forall \ a, x$$
$$|_{x} = \mathbb{1}^{I}, \quad \forall \ x,$$

• Extracting sets of probability distributions from instruments:

Extracting sets of probability distributions from instruments:

The most general bilinear function $f: (A_{a|x}, B_{b|y}) \to \mathbb{R}$ that extracts valid sets of probability distributions from sets of quantum instruments $\{A_{a|x}\}, A_{a|x} \in H^{A_I} \otimes H^{A_O}$ and $\{B_{b|y}\}, B_{b|y} \in H^{B_I} \otimes H^{B_O}$ is

$$p(ab|xy) = T$$

0. Oreshkov, F. Costa, C. Brukner, Nat. Comm. 3, 1092 (2012)

 $\mathbf{r}[(A_{a|x} \otimes B_{b|y})W],$

where $W \in H^{A_I} \otimes H^{A_O} \otimes H^{B_I} \otimes H^{B_O}$ is a process matrix.

$$p(ab|xy) = \operatorname{Tr}\left[\left(A_{a|x}^{A_{I}A_{O}A'}\right)\right]$$

O. Oreshkov, F. Costa, C. Brukner, Nat. Comm. 3, 1092 (2012)

 $\otimes B^{B_I B_O B'}_{b|y} W^{A_I A_O B_I B_O} \otimes \rho^{A'B'}$

$$W \in H^{A_I} \otimes I$$

W > 0 $\operatorname{Tr} W = d_{A_O} d_{B_O}$ $_{A_IA_O}W =_{A_IA_OB_O}W$ $_{B_IB_O}W =_{A_OB_IB_O}W$

where $_XW \coloneqq \operatorname{Tr}_X W \otimes \frac{\mathbb{1}^X}{d_X}$ is the trace-and-replace operation.

M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, C. Brukner, New J. Phys. 17, 102001 (2015)

$H^{A_O} \otimes H^{B_I} \otimes H^{B_O}$ $W =_{A_{O}} W +_{B_{O}} W -_{A_{O}B_{O}} W$

• At the level of probability distributions:

At the level of probability distributions:

A behaviour $\{p^{A \prec B}(ab|xy)\}$ is causally ordered from Alice to Bob if it satisfies

 $\sum_{b} p^{A \prec B}(ab|xy) = \sum_{b} p^{A \prec B}(ab|xy'),$

 $\forall a, x, y, y'$

At the level of probability distributions:

A behaviour $\{p^{A \prec B}(ab|xy)\}$ is causally ordered from Alice to Bob if it satisfies

$$\sum_{b} p^{A \prec B}(ab|xy) = \sum_{b} p^{A \prec B}(ab|xy'), \qquad \forall a, x, y, y'$$

A behaviour $\{p^{causal}(ab|xy)\}$ is causal if it can be expressed as a conv. comb. of ordered behaviours, i.e.,

$$p^{\text{causal}}(ab|xy) := q p^{A \prec B}(ab|xy) + (1-q)p^{B \prec A}(ab|xy), \quad \forall a, b, x, y$$

• At the level of process matrices:

At the level of process matrices:

A process matrix $W^{A \prec B}$ that is causally ordered from Alice to Bob is the most

$$p^{A \prec B}(ab|xy) = \mathsf{T}$$

0. Oreshkov, F. Costa, C. Brukner, Nat. Comm. 3, 1092 (2012)

general operator that takes pairs of instruments to behaviours that are causally ordered from Alice to Bob, according to

 $\operatorname{Tr}\left[\left(A_{a|x}\otimes B_{b|y}\right)W^{A\prec B}\right].$

• At the level of process matrices:

$W^{A \prec B}$

• At the level of process matrices:

G. Chiribella, G. M. D'Ariano, P. Perinotti, EPL 83, 3 (2008)

$W^{A \prec B}$

At the level of process matrices:

$$W^{\text{sep}} =: qW^{A \prec B} + (1 - q)W^{B \prec A},$$

where $0 \le q \le 1$ is a real number.

A process matrix W^{sep} is causally separable if it can be expressed as a convex combination of ordered process matrices, i.e.,

 $W \neq q W^{A \prec B} + (1 - q) W^{B \prec A}$

Known advantages of indefinite causal order:

- Channel discrimination: G. Chiribella, *PRA* 86, 040301 (2012)
- Quantum computation: M. Araújo, et al., PRL 113, 250402 (2014)
- Communication complexity: P. A. Guérin, et al., PRL 117, 100502 (2016)
- Enhanced channel capacity: D. Ebler, et al., PRL 120, 120502 (2018)
- Unitary inversion: M. T. Quintino, *et al.*, *PRL* **123**, 210502 (2019)

DEVICE DEPENDENT

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

DEVICE DEPENDENT

THEORETICAL FRAMEWORK (CAUSAL WITNESSES)¹

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

THEORETICAL FRAMEWORK (CAUSAL WITNESSES)¹

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

THEORETICAL FRAMEWORK (CAUSAL INEQUALITIES)³

THEORETICAL FRAMEWORK (CAUSAL WITNESSES)¹

SOME EXPERIMENTAL **PROPOSALS AND IMPLEMENTATIONS**²

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

THEORETICAL FRAMEWORK (CAUSAL INEQUALITIES)³

THEORETICAL FRAMEWORK (CAUSAL WITNESSES)¹

SOME EXPERIMENTAL **PROPOSALS AND IMPLEMENTATIONS**²

SEMI-DEVICE INDEPENDENT

¹M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, C. Brukner, New J. Phys. 17, 102001 (2015) ²L. M. Procopio, et al., Nat. Comm. 6, 7913 (2015). G. Rubino, et al., Science Advances 3, 3 (2017). K. Goswami et al., PRL 121, 090503 (2018). ³C. Branciard, M. Araújo, A. Feix, F. Costa, Č. Brukner, New, J. Phys. 18, 013008 (2016)

DEVICE INDEPENDENT

THEORETICAL FRAMEWORK (CAUSAL INEQUALITIES)³

NO KNOWN EXPERIMENTAL IMPLEMENTATION

- rise to it is causally non-separable in a DD, SDI, and DI way.
- each scenario.

Efficiently check whether a given behaviour certifies that the process matrix that gave

Characterise which sets of causally non-separable process matrices can be certified in

Given quantities	Variables
$\{p^Q(ab xy)\}$	W
$\{\overline{A}_{a x}\}, \{\overline{B}_{b y}\}$	

Given quantities	Variables
$\{p^Q(ab xy)\}$	W
$\{\overline{A}_{a x}\}, \{\overline{B}_{b y}\}$	

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall W^{\operatorname{sep}}$

Given quantities	Variables
$\{p^Q(ab xy)\}$	W
$\{\overline{A}_{a x}\},\ \{\overline{B}_{b y}\}$	

Semi-device-independent

Given quantities	Variables
$\{p^Q(ab xy)\}$	d_{A_I}, d_{A_O}
$\{\overline{B}_{b y}\}$	$\{A_{a x}\}$
	W

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall W^{\operatorname{sep}}$

Given quantities	Variables
$\{p^Q(ab xy)\}$	W
$\{\overline{A}_{a x}\},\ \{\overline{B}_{b y}\}$	

Semi-device-independent

Given quantities	Variables
$\{p^Q(ab xy)\}$	d_{A_I}, d_{A_O}
$\{\overline{B}_{b y}\}$	$\{A_{a x}\}$
	W

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall W^{\operatorname{sep}}$

$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall \{A_{a|x}\}, W^{\operatorname{sep}}$

Given quantities	Variables
$\{p^Q(ab xy)\}$	W
$\{\overline{A}_{a x}\},\ \{\overline{B}_{b y}\}$	

Semi-device-independent

Given quantities	Variables
$\{p^Q(ab xy)\}$	d_{A_I}, d_{A_O}
$\{\overline{B}_{b y}\}$	$\{A_{a x}\}$
	W

Device-independent

Given quantities	Variables
$\{p^Q(ab xy)\}$	$d_{A_I}, d_{A_O}, d_{B_I}, d_{B_O}$
	$\{A_{a x}\}, \{B_{b y}\}$
	W

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall W^{\operatorname{sep}}$

$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall \{A_{a|x}\}, W^{\operatorname{sep}}$

Given quantities	Variables
$\{p^Q(ab xy)\}$	W
$\{\overline{A}_{a x}\},\ \{\overline{B}_{b y}\}$	

Semi-device-independent

Given quantities	Variables
$\{p^Q(ab xy)\}$	d_{A_I}, d_{A_O}
$\{\overline{B}_{b y}\}$	$\{A_{a x}\}$
	W

Device-independent

Given quantities	Variables
$\{p^Q(ab xy)\}$	$d_{A_I}, d_{A_O}, d_{B_I}, d_{B_O}$
	$\{A_{a x}\}, \{B_{b y}\}$
	W

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall W^{\operatorname{sep}}$

$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$ $\forall \{A_{a|x}\}, W^{\operatorname{sep}}$

 $p^{Q}(ab|xy) \neq \operatorname{Tr}\left[(A_{a|x} \otimes B_{b|y})W^{\operatorname{sep}}\right]$ $\forall \{A_{a|x}\}, \{B_{b|y}\}, W^{\text{sep}}$

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

$\{p^Q(ab|xy)\}, \{\overline{A}_{a|x}\}, \{\overline{B}_{b|y}\}\}$

Deciding if a behaviour comes from a causally non-sep W: SDP

given
$$\{p^Q(ab|xy)$$

find W
subject to $p^Q(ab|xy) =$
 $W \in \text{SEP},$

M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, C. Brukner, New J. Phys. 17, 102001 (2015)

$\{p^Q(ab|xy)\}, \{\overline{A}_{a|x}\}, \{\overline{B}_{b|y}\}\}$

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

$\{\overline{A}_{a|x}\}, \{\overline{B}_{b|y}\}$

$= \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y}) W \right] \ \forall a, b, x, y$

Can all causally non-sep process matrices be DD-certified?

$\{p^Q(ab|xy)\}, \{\overline{A}_{a|x}\}, \{\overline{B}_{b|y}\}\}$

Yes.

Can all causally non-sep process matrices be DD-certified?

$\{p^Q(ab|xy)\}, \{\overline{A}_{a|x}\}, \{\overline{B}_{b|y}\}\}$

Yes.

(tomographically complete instruments)

$\{p^Q(ab|xy)\}$

$p^{Q}(ab|xy) \neq \operatorname{Tr}\left[(A_{a|x} \otimes B_{b|y})W^{\operatorname{sep}}\right]$

$$p^Q(ab|xy) \neq \mathrm{Tr}$$

• *All causal behaviours* can be attained by instruments.

 $\forall \{ p^{\text{causal}}(ab|xy) \}, \exists \{ A_{a|x} \}, \{ B_{b|y} \}, W$

$$\{p^Q(ab|xy)\}$$

$r\left[(A_{a|x} \otimes B_{b|y})W^{\operatorname{sep}}\right]$

All causal behaviours can be attained by causally separable process matrices and pairs of

$$y^{\text{sep}}$$
; $p^{\text{causal}}(ab|xy) = \text{Tr}\left[(A_{a|x} \otimes B_{b|y})W^{\text{sep}}\right]$

 $\{p^Q(ab|xy)\}$

$p^{Q}(ab|xy) \neq \operatorname{Tr}\left[(A_{a|x} \otimes B_{b|y})W^{\operatorname{sep}}\right]$

A process matrix can be (DI) certified to be causally non-separable iff it generates a non-causal behaviour.

Deciding if a behaviour came from a causally non-sep W: LIN-PROG

 $p^Q(ab|xy) \neq \mathrm{Tr}$

given
$$\{p^Q(ab|xy)\}$$

find $q, \{p^{A \prec B}(ab|xy)\}, \{p^{B \prec A}(ab|xy)\}$
s.t. $p^Q(ab|xy) = q p^{A \prec B}(ab|xy) + (1-q)p^{B \prec A}(ab|xy) \quad \forall a, b, x, y$

³C. Branciard, M. Araújo, A. Feix, F. Costa, Č. Brukner, New, J, Phys. 18, 013008 (2016)

$\{p^Q(ab|xy)\}$

$$\left[(A_{a|x} \otimes B_{b|y}) W^{\operatorname{sep}} \right]$$

Is there a causally non-sep process matrix that can be DI-certified?

 $\{p^Q(ab|xy)\}$

Yes.

Is there a causally non-sep process matrix that can be DI-certified?

O. Oreshkov, F. Costa, C. Brukner, Nat. Comm. 3, 1092 (2012)

 $\{p^Q(ab|xy)\}$

Yes.

W^{OCB}, violates the GYNI inequality

Can all causally non-sep process matrices be DI-certified?

 $\{p^Q(ab|xy)\}$

No.

Can all causally non-sep process matrices be DI-certified?

A. Feix, M. Araújo, Č. Brukner. New J. Phys. 18, 083040 (2016)

 $\{p^Q(ab|xy)\}$

No.

- There exists causally non-separable process matrices that
 - *cannot* generate non-causal behaviours.
 - W^{FAB}
- 'causal' process matrices, do not violate any causal inequality

Cannot be related to the probabilities alone; cannot be related to the process matrix alone.

• Need new mathematical object.

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

$p(ab|x, \overline{B}_{b|y}) = \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W\right]$

$p(ab|x, \overline{B}_{b|y}) = \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W\right]$

$p(ab|x, \overline{B}_{b|y}) = \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W\right]$

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

$= \operatorname{Tr} \left[\overline{B}_{b|y} \operatorname{Tr}_{A_I A_O} \left(A_{a|x} \otimes \mathbb{I}^B W \right) \right]$

$p(ab|x, \overline{B}_{b|y}) = \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W\right]$

 $= \operatorname{Tr} \left[\overline{B}_{b|y} \operatorname{Tr}_{A_I A_O} \left(A_{a|x} \otimes \mathbb{I}^B W \right) \right]$

$p(ab|x, \overline{B}_{b|y}) = \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W\right]$ $= \operatorname{Tr} \left[\overline{B}_{b|y} \operatorname{Tr}_{A_I A_O} \left(A_{a|x} \otimes \mathbb{I}^B W \right) \right]$

 $= \operatorname{Tr} \left[\overline{B}_{b|y} w_{a|x}^Q \right]$

$p(ab|x, \overline{B}_{b|y}) = \operatorname{Tr}\left[(A_{b|y}) = \operatorname{Tr}\left[($

 $= \operatorname{Tr} \left[\overline{E} \right]$

 $= \operatorname{Tr} \left[\overline{B} \right]$

Process assemblage

$$\begin{bmatrix}
A_{a|x} \otimes \overline{B}_{b|y} W \end{bmatrix}$$

$$\begin{bmatrix}
B_{b|y} \operatorname{Tr}_{A_{I}A_{O}} (A_{a|x} \otimes \mathbb{I}^{B} W) \\
\end{bmatrix}$$

$$\begin{bmatrix}
B_{b|y} w_{a|x}^{Q} \end{bmatrix}$$

Causally ordered assemblage: probabilities

$$\{w_{a|x}^{Q,A \prec B}\}: w_{a|x}^{Q,A \prec B} \in L(H^{B_I B_O})$$

 $w_{a|x}^{Q,A\prec B} = \operatorname{Tr}_{A_I A_O} \left[\left(A_{a|x} \otimes \mathbb{I}^B \right) W^{A\prec B} \right]$

Causally ordered assemblage: probabilities

$$\{w_{a|x}^{Q,A \prec B}\}: w_{a|x}^{Q,A \prec B} \in L(H^{B_I B_O})$$

 $w_{a|x}^{Q,A\prec B} = \operatorname{Tr}_{A_I A_O} \left[\left(A_{a|x} \otimes \mathbb{I}^B \right) W^{A\prec B} \right]$

Causally ordered assemblage: probabilities

Most general set of operators $\{w_{a|x}^{A \prec B}\}: w_{a|x}^{A \prec B} \in L(H^{B_I B_O})$ that takes a set of instruments to a causally ordered behaviour:

 $p^{A \prec B}(ab|xy) = \operatorname{Tr}\left[B_{b|y}w^{A \prec B}_{a|x}\right]$

$$\{w_{a|x}^{Q,A \prec B}\}: w_{a|x}^{Q,A \prec B} \in L(H^{B_I B_O})$$

 $w_{a|x}^{Q,A \prec B} = \operatorname{Tr}_{A_I A_O} \left[\left(A_{a|x} \otimes \mathbb{I}^B \right) W^{A \prec B} \right]$

Causally ordered assemblage: probabilities

$$\{w_{a|x}^{A \prec B}\} : w_{a|x}^{A \prec B} \in L(H^{B_I B_O})$$
$$w_{a|x}^{A \prec B} = {}_{B_O} w_{a|x}^{A \prec B} \quad \forall a, x$$

$$\{w_{a|x}^{B\prec A}\}: w_{a|x}^{B\prec A} \in L(H^{B_{I}B_{O}})$$
$$\sum_{a} w_{a|x}^{B\prec A} = \sum_{a} w_{a|x'}^{B\prec A} \quad \forall x, x'$$

$$\{w_{a|x}^{Q,A \prec B}\}: w_{a|x}^{Q,A \prec B} \in L(H^{B_I B_O})$$

 $w_{a|x}^{Q,A \prec B} = \operatorname{Tr}_{A_I A_O} \left[\left(A_{a|x} \otimes \mathbb{I}^B \right) W^{A \prec B} \right]$

Causally ordered assemblage: probabilities

$$\{w_{a|x}^{A \prec B}\} : w_{a|x}^{A \prec B} \in L(H^{B_I B_O})$$
$$w_{a|x}^{A \prec B} = {}_{B_O} w_{a|x}^{A \prec B} \quad \forall a, x$$

$$\{w_{a|x}^{B\prec A}\}: w_{a|x}^{B\prec A} \in L(H^{B_I B_O})$$
$$\sum_{a} w_{a|x}^{B\prec A} = \sum_{a} w_{a|x'}^{B\prec A} \quad \forall x, x'$$

A process matrix can be (SDI) certified to be non-causally separable iff it can generate a non-causal assemblage
SEMI-DEVICE INDEPENDENT

$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

SEMI-DEVICE INDEPENDENT

Deciding if an assemblage came from a causally non-sep W: SDP

 $p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

given $\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$ find $\{w_{a|x}\}$ $\{w_{a|x}\} \in \text{CAUSAL},$

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

s.t. $p^Q(ab|xy) = \operatorname{Tr}(\overline{B}_{b|y} w_{a|x}) \ \forall a, b, x, y$

Is there a causally non-sep process matrix that can be SDI-certified?

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

Yes.

Is there a causally non-sep process matrix that can be SDI-certified?

DI-certifiable is also SDI-certifiable.

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

Yes.

Can all causally non-sep process matrices be SDI-certified?

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

No.

Can all causally non-sep process matrices be SDI-certified?

Not only these process matrices cannot the certified in a DI way, W^{FAB} . but also not in a SDI way.

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

No.

There exists causally non-separable process matrices that *cannot* generate non-causal assemblages.

 $W \notin SEP; W^{T_A} \in SEP$

Is there a causally non-sep process matrix that can be SDI-certified but that *cannot* be DI-certified?

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

Yes.

$\{p^Q(ab|xy)\}, \{\overline{B}_{b|y}\}$

Is there a causally non-sep process matrix that can be SDI-certified but that *cannot* be DI-certified?

Yes.

 W^{switch}

The quantum switch.

SOURCE: G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron, Phys. Rev. A 88, 022318 (2013) - FIG. 02

SOURCE: G. Chiribella, G. M. D'Ariano, P. Perinotti, B. Valiron, Phys. Rev. A 88, 022318 (2013) - FIG. 03

- L. M. Procopio, et al., Nat. Comm. 6, 7913 (2015)
- G. Rubino, et al., Science Advances 3, 3 (2017)
- K. Goswami, et al., PRL 121, 090503 (2018)
- K. Goswami, *et al.*, arXiv: 1807.07383 (2018)
- M. Taddei, *et al.*, arXiv: 2002.07817 (2020)

Device-dependent experiments based on the quantum switch:

G. Rubino, et al., QIM V: Quantum Tech., S3B.3. (2019)

$W_{\text{switch}} \neq q \ W^{A \prec B \prec C} + (1-q) W^{B \prec A \prec C}$

	A	B	C
DD	T	T	T
SDI			
DI	U	U	U

	A	B	C
DD	T	T	T
SDI	T	T	U
SDI	T	U	U
SDI	U	T	T
SDI	U	U	T
DI	U	U	U

M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, C. Brukner, New J. Phys. 17, 102001 (2015)

C. Branciard, Scientific Reports 6, 26018 (2016)

Any tripartite process matrix $W \in L(H^{A_I A_O B_I B_O} \otimes H^C)$ that satisfies the property

$\operatorname{Tr}[(A_{a|x}^{A_{I}A_{O}} \otimes B_{b|y}^{B_{I}B_{O}} \otimes \mathbb{I}^{C})W^{A_{I}A_{O}B_{I}B_{O}C}] = q \ p^{A \prec B}(ab|xy) + (1-q)p^{B \prec A}(ab|xy),$

cannot be certified to be causally non-separable in a UUT scenario.

THE QUANTUM SWITCH: UTT, TTU, AND TUU

The quantum switch can be certified in the UTT, TTU, and TUU scenarios.

THE QUANTUM SWITCH: UTT, TTU, AND TUU

The quantum switch can be certified in the UTT, TTU, and TUU scenarios.

$$\begin{aligned} A_{0|0}^{A_{I}A_{O}} &= B_{0|0}^{B_{I}B_{O}} = |0\rangle \langle 0 \\ A_{1|0}^{A_{I}A_{O}} &= B_{1|0}^{B_{I}B_{O}} = |1\rangle \langle 1 \\ A_{0|1}^{A_{I}A_{O}} &= B_{0|1}^{B_{I}B_{O}} = |+\rangle \langle 1 \\ A_{1|1}^{A_{I}A_{O}} &= B_{1|1}^{B_{I}B_{O}} = |-\rangle \langle 1 \\ A_{1|1}^{A_{I}A_{O}} &= B_{1|1}^{A_{I}A_{O}} &= B_{1|1}^{A_{I}A_{O}} = |-\rangle \langle 1 \\ A_{1|1}^{A_{I}A_{O}} &=$$

 $\langle +|\otimes |+\rangle\langle +|,$ $\langle -|\otimes|angle\langle -|,$

 $egin{aligned} &\langle 0|\otimes |0
angle \langle 0|, & M^C_{0|0} &= |+
angle \langle +|, \ &\langle 1|\otimes |1
angle \langle 1|, & M^C_{1|0} &= |angle \langle -|, \end{aligned}$

	DD	SDI	DI
W^{FAB}			
W^{switch}			
$W^{ m OCB}$			

	DD	SDI	DI
W^{FAB}			
W^{switch}			
$W^{ m OCB}$			

	DD	SDI	DI
W^{FAB}			
W^{switch}			
$W^{ m OCB}$			

	DD	SDI	DI
W^{FAB}			
W^{switch}			
$W^{ m OCB}$			

DEVICE DEPENDENT

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

DEVICE DEPENDENT

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

 $p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x}, \overline{B}_{b|y})\right]$

$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

 $p^{Q}(ab|xy) \neq \operatorname{Tr}\left[\left(A_{a|x} \otimes\right)\right]$

$$B_{b|y})W^{\operatorname{sep}}$$

$$_{c}\otimes\overline{B}_{b|y})W^{\mathrm{sep}}ig]$$

DEVICE DEPENDENT

SEMI-DEVICE INDEPENDENT

DEVICE INDEPENDENT

 $p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x}, \overline{B}_{b|y})\right]$

$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(A_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

 $p^{Q}(ab|xy) \neq \operatorname{Tr}\left[(A_{a|x} \otimes B_{b|y})W^{\operatorname{sep}}\right]$

$$_{x}\otimes\overline{B}_{b|y})W^{\mathrm{sep}}ig]$$

$p^{Q}(ab|\overline{A}_{a|x}, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[(\overline{A}_{a|x} \otimes \overline{B}_{b|y})W^{\operatorname{sep}}\right]$

$$p^{Q}(ab|x, \overline{B}_{b|y}) \neq \operatorname{Tr}\left[\overline{B}_{b|y}w_{a|x}^{\mathrm{causal}}\right]$$

 $p^Q(ab|xy) \neq p^{\text{causal}}(ab|xy)$

Thank you.