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Entanglement shared among multiple parties
presents complex challenges for the characteri-
sation of different types of entanglement. One
of the most fundamental insights is the fact
that some mixed states can feature entangle-
ment across every possible cut of a multipartite
system yet can be produced via a mixture of
states separable with respect to different parti-
tions. To distinguish states that genuinely can-
not be produced from mixing such partition-
separable states, the term genuine multipartite
entanglement was coined. All these considera-
tions originate in a paradigm where only a sin-
gle copy of the state is distributed and locally
acted upon. In contrast, advances in quan-
tum technologies prompt the question of how
this picture changes when multiple copies of
the same state become locally accessible. Here
we show that multiple copies unlock genuine
multipartite entanglement from partially sep-
arable states, i.e., mixtures of the partition-
separable states, even from undistillable en-
sembles, and even more than two copies can
be required to observe this effect. With these
findings, we characterise the notion of genuine
multipartite entanglement in the paradigm of
multiple copies and conjecture a strict hier-
archy of activatable states and an asymptotic
collapse of the hierarchy.

1 Introduction
Entanglement shared among multiple parties is ac-
knowledged as one of the fundamental resources driv-
ing the second quantum revolution [1], for instance,
as a basis of quantum network proposals [2, 3, 4, 5],
as a key resource for improved quantum sensing [6]
and quantum error correction [7] or as generic ingre-
dient in quantum algorithms [8] and measurement-
based quantum computation [9, 10]. Yet, its detec-
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tion and characterisation are complicated by several
factors: among them, the computational hardness of
deciding whether any given system even exhibits any
entanglement at all [11] as well as the fact that the
usual paradigm of local operations and classical com-
munication (LOCC) lead to infinitely many types of
entanglement [12, 13, 14, 15, 16, 17, 18] already for
single copies of multipartite states. Significant effort
has thus been devoted to devising practical means of
entanglement certification from limited experimental
data [19, 20].

One of the principal challenges for the characterisa-
tion of multipartite entanglement lies in distinguish-
ing between partial separability and its counterpart,
genuine multipartite entanglement (GME)1. Here, a
multipartite state is called partially separable if it
can be decomposed as a mixture of partition-separable
states, i.e., of states separable with respect to some
(potentially different) partitions of the parties into
two or more groups, whereas any state that cannot
be decomposed in this way has GME (see Fig. 1 and
Table 1). One may further classify partially separable
states as k-separable states according to the maximal
number k of tensor factors that all terms in the par-
tially separable decomposition can be factorised into.
If a state admits a decomposition where each term
is composed of at least two tensor factors (k = 2),
the state is called biseparable. Thus, every partially
separable state is k-separable for some k ≥ 2, and
hence (at least) biseparable. This distinction arises
naturally when considering the resources required to
create a specific state: any biseparable state can be
produced via LOCC in setups where all parties share
classical randomness and subsets of parties share en-
tangled states. One of the counter-intuitive features
of partially separable states is the possibility for bipar-
tite entanglement across every possible bipartition2.
Consequently, the notion of bipartite entanglement

1Note that the term was also coined for multipartite pure
states with exclusively non-vanishing n-tangle in Ref. [13].

2An explicit example of a k/2-separable (and thus bisepara-
ble) k-qubit state (for even k) with the bipartite entanglement
between all neighbouring qubits in a linear arrangement can be
found in [21, footnote 30].
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Figure 1: GME and (partial) separability for three qubits.
All three-qubit states separable with respect to one of
the three bipartitions, A1|A2A3 (yellow), A2|A1A3 (darker
green), and A3|A1A2 (background), form convex sets,
whose intersection (turquoise) contains (but is not limited
to) all fully separable states A1|A2|A3 (dark blue). The
convex hull of these partition-separable states contains all
partially separable (the same as biseparable for tripartite sys-
tems) states. All states that are not biseparable are GME.
States with k-copy activatable GME are contained in the set
of biseparable but not partition-separable states and are con-
jectured to form the lighter green areas, with those states
for which GME is activatable for higher values of k farther
away from the border between GME and biseparability. The
horizontal line represents the family of isotropic GHZ states
ρ(p), containing the maximally mixed state (p = 0) and the
GHZ state (p = 1). The values p(k)

GME indicate k-copy GME
activation thresholds, which we discuss in the following.

across partitions is insufficient to capture the notion of
partial separability, and conventional methods, such
as positive maps [22, 23], cannot be straightforwardly
applied to reveal GME (with new concepts for positive
maps derived for that purpose in [24, 25]), which re-
sults in additional challenges compared to the — rel-
atively — simpler scenario of detecting bipartite or
partition entanglement (e.g., as in [26]).

An assumption inherent in the definitions above is
that all parties locally act only on a single copy of
the distributed state. However, in many experiments
where quantum states are distributed among (poten-
tially distant) parties, multiple independent but iden-
tically prepared copies of states are (or at least, can
be) shared. For instance, exceptionally high visibil-
ities of photonic states can only be achieved if each
detection event stems from almost identical quantum
states [27, 28]. Adding noise to the channel then pro-
duces the situation we focus on in this article: mul-
tiple copies of noisy quantum states produced in a
laboratory [29, 30]. Even limited access to quan-
tum memories or signal delays then allows one to act
on multiple copies of the distributed states, which is
a recurring theme also in research on quantum net-
works [31, 32, 33]. Characterising properties of GME
in multi-copy scenarios is thus not only of fundamen-

Figure 2: Activation of GME from biseparable states. (a)
Separable bipartite states remain separable, no matter how
many copies are shared, e.g., if ρA1A2 and ρB1B2 are sep-
arable with respect to the bipartitions A1|A2 and B1|B2,
then so is ρA1A2 ⊗ ρB1B2 . (b) In contrast, the joint state
of multiple copies of biseparable states, e.g., ρA1,A2, . . . ,AN

,
ρB1,B2, . . . ,BN

, and ρC1, C2, . . . , CN
, can be GME with respect

to the partition A1B1C1|A2B2C2| . . . |ANBNCN .

tal theoretical interest but also crucial for practical
applications that require GME to be distributed, such
as conference key agreement [34].

However, we demonstrate here that, unlike the dis-
tinction between separable and entangled states, the
distinction between biseparability and GME is not
maintained in the transition from one to many copies;
i.e., partial separability is not a tensor-stable con-
cept. As we show, for N parties 1, . . . , N , there ex-
ist multipartite quantum states ρA1,A2, . . . ,AN

that are
biseparable, but which can be activated in the sense
that sharing two copies results in a GME state, i.e.,
such that the joint state ρA1,A2, . . . ,AN

⊗ ρB1,B2, . . . ,BN

of two identical copies (labelled A and B, respec-
tively) is not biseparable with respect to the partition
A1B1|A2B2| . . . |ANBN . (See Fig. 2.) That such acti-
vation of GME is in principle possible had previously
only been noted in [35], where it was observed that
two copies of a particular four-qubit state that is it-
self almost fully separable can become GME. Here, we
systematically investigate this phenomenon of multi-
copy GME activation. As the first main result, we
show that the property of biseparability is not tensor
stable in general by identifying a family of N -qubit
isotropic Greenberger-Horne-Zeilinger (GHZ) states
with two-copy activatable GME for all N . We fur-
ther demonstrate the existence of biseparable states
within this family for which two copies are not enough
to activate GME, but three copies are. Moreover, we
show that the bound for partition-separability coin-
cides with the asymptotic (in terms of the number
of copies) GME-activation bound for isotropic GHZ
states.

Multi-copy GME activation is particularly remark-
able — and may appear surprising at first — be-
cause it is in stark contrast to bipartite entanglement:
Two copies of states separable with respect to a fixed
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Table 1: Summary of terminology on GME in this paper.

Term Meaning

k-separable convex combination of pure states, each of which is a product of at least k
projectors

biseparable synonymous with 2-separable

partially separable k-separable for some k > 1

partition-separable
separable for a specific partition of the multipartite Hilbert space, i.e., a convex
combination of projectors, each of which is a product with respect to the same
partition into subsystems

multipartite entangled entangled across all bipartitions

genuine multipartite entangled non-biseparable

partition always remain partition-separable and can
never become GME. However, from the perspective
of entanglement distillation — the concentration of
entanglement from many weakly entangled (copies of)
states to few strongly entangled ones — such an ac-
tivation seems more natural. After all, if one party
shares bipartite maximally entangled states with each
other party, these could be used to establish any GME
state among all N parties via standard teleportation,
thus distributing GME by sharing only two-party en-
tangled states. Nevertheless, such a procedure would
require at least N − 1 copies of these bipartite en-
tangled states (in addition to a local copy of the
GME state to be distributed), and already the ex-
ample from [35] suggests that one does not have to
go through first distilling bipartite entangled pairs,
followed by teleportation, but two copies can natu-
rally feature GME already. While we have seen that
the phenomenon of GME activation is more than just
distillation, one may still be tempted to think that
distillable entanglement is required for GME activa-
tion. It is known that there exist bound entangled
states — entangled states that do not admit distilla-
tion of entanglement no matter how many copies are
provided. In particular, all entangled states with pos-
itive partial transpose (PPT) across a given cut are
undistillable since any number of copies is also PPT.
One might thus suspect that GME activation should
not be possible for biseparable states that are PPT
across every cut and hence have no distillable entan-
glement (even if multiple parties are allowed to collab-
orate). As another main result, we show that this is
not the case by constructing a biseparable state that
is PPT with respect to every cut, yet two copies of
the state are indeed GME. Together, our results thus
support the following conjectures:

(i) There exists a hierarchy of states with k-copy
activatable GME, i.e., for all k ≥ 2 there exists
a biseparable but not partition-separable state ρ

such that ρ⊗k−1 is biseparable, but ρ⊗k is GME.

(ii) GME may be activated for any biseparable but
not partition-separable state (light green areas
in Fig. 1) of any number of parties as k →∞.

In the following, we first provide the formal defi-
nitions for biseparability and GME in Sec. 2 before
turning to the family of N -qubit isotropic GHZ states
in Sec. 3. For all biseparable states in this family,
we provide upper bounds on the minimal number of
copies required to activate GME in Sec. 4. In Sec. 5,
we then consider the case of three qubits (N = 3),
for which we can show that the bound on three-copy
GME activation is tight in the sense that we identify
all states in the family for which one requires at least
three copies to activate GME, while two copies remain
biseparable, and can also show that GME can indeed
be activated for any biseparable but not partition-
separable state in this family. Moreover, in Sec. 6,
we construct an explicit example for two-copy GME
activation from biseparable states with no distillable
bipartite entanglement. Finally, we discuss the impli-
cations of our results and open questions in Sec. 8.

2 Definitions of biseparability & GME
We summarise the formal definitions of biseparabil-
ity and GME in this paper. (See also Table 1 for
the summary of the definitions here.) Formally, a
pure quantum state of an N -partite system with
Hilbert space H(N) =

⊗N
i=1Hi is separable with re-

spect to a k-partition {A1,A2, . . . ,Ak}, with Ai ⊂
{1, 2, 3, . . . , N} and

⋃k
i=1Ai = {1, 2, 3, . . . , N} such

that
⊗k

i=1HAi
= H(N), if it can be written as

|Φ(k)〉 =
k⊗

i=1
|φAi
〉 , |φAi

〉 ∈ HAi
. (1)
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When generalising to density matrices, it is common
not to specify all possible partitions, but to use the
notion of k-separability instead: A density operator is
called k-separable if it can be decomposed as a convex
sum of pure states that are all separable with respect
to some k-partition, i.e., if it is of the form (see, e.g.,
the review [20])

ρ(k) =
∑

i

pi |Φ(k)
i 〉〈Φ

(k)
i | . (2)

Note that the lack of tensor stability of partial sepa-
rability shown in the following also implies that the
related concept of k-producibility [36, 37] is not ten-
sor stable. Crucially, each |Φ(k)

i 〉 may be k-separable
with respect to a different k-partition. Consequently,
k-separability does not imply separability of ρ(k) with
respect to a specific partition, except when ρ(k) is a
pure state or when k = N . In the latter case the
state is called fully separable. To make this distinc-
tion more explicit, we refer to all (at least) biseparable
states that are actually separable with respect to some
bipartition as partition-separable. At the other end of
this separability spectrum one encounters biseparable
states (k = 2), while all states that are not at least
biseparable (formally, k = 1) are called genuinely N -
partite entangled. We will here use the term GME
for the case k = 1. The operational reason for this
definition of GME is easily explained: any bisepara-
ble state of the form of Eq. (2) can be created by N
parties purely by sharing partition-separable states of
the form of Eq. (1) and some classical randomness.
In addition, this conveniently results in a convex no-
tion of biseparability (as illustrated for the example in
Fig. 1) amenable to entanglement witness techniques,
which inherently rely on convexity.

3 GME of isotropic GHZ states
To overcome the difficulty in analysing GME, the cru-
cial technique here is to use states in X-form, i.e.,
those with nonzero entries of density operators only
on the main diagonal and main anti-diagonal with
respect to the computational basis. Let us now con-
sider a family of mixed N -qubit states, isotropic GHZ
states, given by

ρ(p) = p |GHZN〉〈GHZN| + (1− p) 1
2N 12N , (3)

obtained as convex combination of the N -qubit max-
imally mixed state 1

2N 12N and a pure N -qubit GHZ
state

|GHZN〉 = 1√
2

(
|0〉⊗N + |1〉⊗N)

. (4)

with real mixing parameter p ∈ [−1/(2N − 1), 1].
Since states in this family are in X-form with re-
spect to the N -qubit computational basis, we can
straightforwardly calculate the genuine multipartite

(GM) concurrence, an entanglement measure for a
multipartite state defined in terms of a polynomial
of elements of its density matrix [38, 39]. For any
N -qubit density operator ρX in X-form, i.e.,

ρX =

 ã z̃ d̃

d̃ z̃† d̃ b̃ d̃

 , (5)

where ã = diag{a1, . . . , an}, b̃ = diag{b1, . . . , bn}, and
z̃ = diag{z1, . . . , zn} are diagonal n×n matrices with
n = 2N−1, ai, bi ∈ R and zi ∈ C for all i = 1, 2, . . . , n,
and d̃ = antidiag{1, 1, . . . , 1} is antidiagonal, the GM
concurrence is given by

CGM(ρX) = 2 max
{

0,max
i
{|zi| −

n∑
j 6=i

√
ajbj}

}
, (6)

and provides a necessary and sufficient condition for
GME whenever CGM > 0. In the case of the state
ρ(p) from Eq. (3), we have ai = bi = 1−p

2N + δi1
p
2 and

zi = δi1
p
2 , such that

CGM
[
ρ(p)

]
= max{0, |p| − (1− p)(1− 21−N )}. (7)

Thus, ρ(p) is GME if and only if

p > p(1)
GME(N) := 2N−1 − 1

2N − 1 , (8)

i.e., if and only if p surpasses the single-copy threshold
p(1)

GME. Conversely, we can be certain that ρ(p) is not
GME for p ≤ (2N−1− 1)/(2N − 1), and hence at least
biseparable.

4 Multi-copy GME criterion
Our first goal is then to check if two copies of ρ(p)
are GME. Since the GM concurrence is an en-
tanglement monotone, CGM

[
ρ(p)⊗k

]
is monotonically

non-decreasing as k increases [39]; that is, if we
have CGM

[
ρ(p)

]
= 0 for ρ(p) in X-form, it holds

that CGM
[
ρ(p)⊗2] ≥ 0 in general. However, using

CGM
[
ρ(p)⊗2] > 0 as a necessary and sufficient cri-

terion for GME is not an option in this case, since
ρ(p)⊗2 may not be of X-form even if a single copy is,
and we therefore generally cannot directly calculate
CGM

[
ρ(p)⊗2]. The crucial idea here is to make use

of the fact that stochastic LOCC (SLOCC) can never
create GME from a biseparable state.

To construct a sufficient GME criterion, we there-
fore use a map E◦ implementable via SLOCC [40],
which, for any two density operators ρ and σ acting
on H, maps the state ρ⊗ σ acting on H⊗2 to

E◦[ρ⊗ σ] = ρ ◦ σ
Tr(ρ ◦ σ) on H, (9)

where the right-hand side is a density operator act-
ing on H, and “◦” denotes the Hadamard product (or
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Schur product), i.e., the component-wise multiplica-
tion of the two matrices. What is useful for us here is
that the Hadamard product of two X-form matrices
results in an X-form matrix. Consequently, we can
directly calculate the GM concurrence for the state
resulting from applying the ‘Hadamard-product map’
E◦ to two copies of an originally biseparable state. If
the GM concurrence of E◦[ρ(p)⊗2] is nonzero, we can
conclude that two copies of ρ(p) are GME, even if
a single copy is not. To decide whether E◦[ρ(p)⊗2]
is GME or not, i.e., whether the GM concurrence is
nonzero or not, we can ignore the normalization and
just consider ρ(p) ◦ ρ(p) = ρ(p)◦2. Moreover, in the
maximization over the index i in Eq. (6), the maxi-
mum is obtained for i = 1. We can thus conclude that
ρ(p)⊗2 is GME if

|z2
1 | −

n∑
j 6=1

√
a2

jb
2
j = p2

4 − (2N−1 − 1)
( 1−p

2N

)2
> 0,

(10)

which translates to the condition p/(1 − p) >√
2N−1 − 1/2N−1, and in turn can be reformulated

to the condition

p > p(2)
GME(N) :=

√
2N−1 − 1

2N−1 +
√

2N−1 − 1
. (11)

As we see, we have p(1)
GME > p(2)

GME for all N ≥ 3, con-
firming that there exist biseparable states with values
p < p(1)

GME for which two copies are GME, i.e., such
that p > p(2)

GME.
Moreover, we can now concatenate multiple uses of

the SLOCC map E◦. For instance, we can identify the
threshold value p(3)

GME of p at which the state E◦
[
ρ(p)⊗

E◦[ρ(p)⊗2]
]
resulting from 2 applications of E◦ to a

total of 3 copies of ρ(p) is GME, or, more generally,
the corresponding threshold value p(k)

GME for which k
copies result in a GME state after applying the map
E◦ a total of k − 1 times. From Eq. (10) it is easy to
see that these threshold values are obtained as

p(k)
GME(N) :=

k
√

2N−1 − 1
2N−1 + k

√
2N−1 − 1

. (12)

5 Hierarchy of k-copy activatable
states
The threshold values p(k)

GME provide upper bounds on
the minimal number of copies required to activate
GME: a value p satisfying p(k)

GME < p < p(k − 1)
GME for

k ≥ 2 implies that k copies are enough to activate
GME. But since the map E◦ (does not create and)
may reduce GME, it does not imply that k copies are
actually needed; up to this point, there is a possibility
that two copies are all it takes.

However, at least for the case of three qubits (N =
3) and three copies (k = 3), we find that this is not
the case. That is, for all isotropic three-qubit GHZ

states with p ≤ p(2)
GME(N = 3) =

√
3/(4+

√
3), we find

that two copies are still biseparable, and thus at least
three copies are required to activate GME. The ex-
plicit biseparable decomposition of two copies of the
states in this range is presented in Appendix A. Al-
though it does not constitute conclusive proof, this
result nevertheless supports our first conjecture, re-
peated here for convenience:
Conjecture (i): There exists a hierarchy of states with
k-copy activatable GME, i.e., for all k ≥ 2 there exists
a biseparable but not partition-separable state ρ such
that ρ⊗k−1 is biseparable, but ρ⊗k is GME.

The conjectured existence of a hierarchy of bisepa-
rable states with k-copy activatable GME means that
states become less and less ‘valuable’ as the number
of copies k required to obtain GME increases. At the
same time, it is also clear that all partition-separable
states cannot be used to activate GME because sep-
arability with respect to any fixed partition is tensor
stable. But it is not clear where exactly the boundary
between activatable and non-activatable states really
lies (see Fig. 1).

To shed light on this question, let us again examine
the isotropic GHZ states from Eq. (3) with regards to
partition-separability with respect to the bipartition
separating the first qubit A1 from the remaining N −
1 qubits (collected in Ã2), i.e., A1|Ã2. Using this
partition, we can write

ρ(p) = p |Φ+〉〈Φ+|A1Ã2
+ 1−p

2N 1A1⊗1Ã2
+ 1−p

2N 1A1⊗1Ã⊥2
= 1+p

2 ρ̃A1Ã2
+ 1−p

2
1

2N−1 1A1⊗1Ã⊥2 , (13)

where |Φ+〉A1Ã2
= 1√

2

(
|0〉A1

|0̃〉Ã2
+ |1〉A1

|1̃〉Ã2

)
with

|̃i〉Ã2
=
⊗N

j=2 |i〉Aj
for i = 0, 1, 1Ã2

=
∑

i=0,1 |̃i〉〈̃i|
and 1Ã⊥2

= 12N−1 − 1Ã2
. From this decomposition,

it becomes clear that the state can be written as a
convex sum of a two-qubit state ρ̃A1Ã2

(where the
second qubit lives on the two-dimensional subspace
of Ã2, spanned by the states |̃i〉 for i = 0, 1) and di-
agonal terms proportional to 1A1 ⊗1Ã⊥2 with support
in a subspace Ã⊥2 orthogonal to ρ̃A1Ã2

. The latter
diagonal terms trivially have a separable decomposi-
tion with respect to the bipartition A1|Ã2. For the
two-qubit state ρ̃A1Ã2

, the PPT criterion offers a nec-
essary and sufficient separability criterion, and one
easily finds that the partial transpose of ρ̃A1Ã2

is non-
negative if p ≤ pcrit := 1/(1+2N−1) (see Appendix B).
Further taking into account its qubit exchange sym-
metry, we thus find that ρ(p) is partition-separable
with respect to any bipartition for p ≤ pcrit. At the
same time, we find that limk→∞ p(k)

GME(N) = pcrit,
which implies that any isotropic GHZ state with p >
pcrit features k-copy activatable GME, at least asymp-
totically as k → ∞, and is thus also not partition-
separable. This leads us to our second conjecture,
also repeated here for convenience:
Conjecture (ii): GME may be activated for any bisep-
arable but not partition-separable state of any number
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of parties as k →∞.
Conjecture (ii) holds for isotropic GHZ states. But

does it hold in general?

6 GME activation from PPT entan-
gled states
A situation where one might imagine Conjecture (ii)
to fail is the situation of biseparable (but not
partition-separable) states with PPT entanglement
across every bipartition, as discussed in Sec. 1. For
isotropic GHZ states, however, the PPT criterion
across every cut coincides exactly with the thresh-
old pcrit for biseparability (and GME activation), as
one can confirm by calculating the eigenvalues of the
partial transpose of ρ(p) (see Appendix B). We thus
turn to a different family of states, for which this is
not the case.

Specifically, as we show in detail in Appendix C, we
construct a family of biseparable three-party states

ρA1A2A3 =
3∑

i,j,k=1
i 6=j 6=k 6=i

pi ρAi
⊗ ρPPT
AjAk

(14)

where the ρPPT
AjAk

are (different) two-qutrit states with
PPT entanglement across the respective cuts Aj |Ak

for j 6= k ∈ {1, 2, 3} and
∑

i pi = 1. Via LOCC,
three copies (labelled A, B, and C, respectively) of
this state ρA1A2A3 can be converted to what we call
PPT-triangle states of the form

ρPPT
A2A3

⊗ ρPPT
B1B3

⊗ ρPPT
C1C2

. (15)

Using a GME witness based on the lifted Choi map
(cf. [24, 25]), we show that there exists a parame-
ter range where these PPT-triangle states are GME.
Therefore, it is proved that GME activation is possible
even from biseparable states only with PPT entangle-
ment across every bipartition.

7 GME activation and shared random-
ness
Provided that our conjectures are true, incoherent
mixing (access to shared randomness) can lead to sit-
uations where the number of copies needed for GME
activation is reduced. In the extreme case, and this
is true even based only on the results already proven
here (and thus independently of whether or not the
conjectures turn out to be true or not), the probabilis-
tic combination of partition-separable states (without
activatable GME) can results in a state — a bisep-
arable isotropic GHZ state — which has activatable
GME. Although this may at first glance appear to be
at odds with the usual understanding of bipartite en-
tanglement, which cannot arise from forming convex

combinations of separable states, we believe this can
be understood rather intuitively if we view incoherent
mixing as a special case of a more general scenario in
which one may have any amount of information on the
states that are shared between different observers. As
an example, consider the following situation:

Three parties, labelled, 1, 2 and 3, share two iden-
tical (as in, the system and its subsystems have the
same Hilbert space dimensions and are represented
by the same physical degrees of freedom) tripartite
quantum systems, labelled A and B, in the states
ρA1|A2A3 and ρB1B2|B3 , respectively, where we assume
that ρA1|A2A3 is separable with respect to the bipar-
tition A1|A2A3 and ρB1B2|B3 is separable with re-
spect to the bipartition B1B2|B3. Clearly, both of
these systems and states individually are bisepara-
ble, but if the parties have full information about
which system is which, e.g., the first system is A
and the second system is B, then the joint state
ρA1|A2A3 ⊗ ρB1B2|B3 can be GME with respect to the
partition A1B1|A2B2|A3B3. In this sense, two bisep-
arable systems can yield one GME system. Now, let
us suppose that the parties do not have full informa-
tion which system is in which state. For simplicity,
let us assume that either system may be in either
state with the same probability 1

2 . Then the state of
either of the systems is described by the convex mix-
ture ρmix = 1

2ρA1|A2A3 + 1
2ρB1B2|B3 , where we have

kept the labels A and B, but they now refer to the
same subsystems, i.e., Ai = Bi for all i. The state
ρmix may not be partition separable anymore, but is
certainly still biseparable. In particular, it may have
activatable GME, even though neither ρA1|A2A3 nor
ρB1B2|B3 do. For the sake of the argument let us as-
sume that the latter is indeed the case and that GME
is activated for 2 copies in this case, such that ρ⊗2

mix
is GME. That means, if one has access to both sys-
tems, A and B, even without knowing which system
is in which state, one would end up with GME. How-
ever, the additional randomness with respect to the
case where one knows exactly which state which sys-
tem is in results in an increased entropy of ρ⊗2

mix with
respect to ρA1|A2A3 ⊗ ρB1B2|B3 , and thus represents a
disadvantage with respect to the latter case.

In general, it is therefore not problematic that
the conjectures, if true, would imply that incoher-
ent mixtures of k-activatable states may result in k′-
activatable states with k′ < k. Instead, this can
be considered as a sign that scenarios with multiple
copies of multipartite quantum states give rise to fea-
tures that are not captured by convex structures on
the level of the single-copy state space.

8 Conclusion and outlook
Our results show that a modern theory of entangle-
ment in multipartite systems, which includes the po-
tential to locally process multiple copies of distributed
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quantum states, exhibits a rich structure that goes be-
yond the convex structure of partially separable states
on single copies. While we conjecture that asymptot-
ically, an even simpler description might be possible,
i.e., separability in multipartite systems collapses to a
simple bipartite concept of separability, we show that
two copies are certainly not sufficient for reaching this
simple limit, thus leaving the practical certification
with finite copies a problem to be studied.

Indeed, our results show that GME is a resource
with a complex relationship to bipartite entanglement
in the context of local operations and shared random-
ness (cf. [41]). An array of important open questions
arises from our results, which can thus be considered
to establish an entirely new direction of research: first
and foremost, this includes the quest for conclusive ev-
idence for or against our conjectures. Besides deter-
mining whether these conjectures are ultimately cor-
rect or not, it will be of high interest to determine
which properties (of the biseparable decompositions)
of given states permit or prevent GME activation with
a certain number of copies. Another open question is
the minimal local dimension necessary for GME ac-
tivation from biseparable states with PPT entangle-
ment across every cut. Furthermore, from a practical
point of view, it will be desirable to develop a theory of
k-copy multipartite entanglement witnesses that are
non-linear expressions of density matrices and allow
for a more fine-grained characterisation of multipar-
tite entanglement in networks with local memories.
Finally, although separable states and shared classical
randomness are free under LOCC, i.e., under a con-
ventional choice of free operations in the resource the-
ory of bipartite entanglement, our results suggest that
convex combinations of different partition-separable
states with shared classical randomness can be used
as a resource for GME activation in multi-copy sce-
narios; that is, it may not be straightforward to study
GME activation within the usual resource-theoretical
framework under LOCC. In view of this situation, it
would be interesting for future research to establish
a new framework for understanding such a compli-
cated aspect of multipartite entanglement as GME
activation by, e.g., considering non-convex quantum
resource theories where classical randomness can be
used as a resource [42, 43].

Acknowledgments

We acknowledge support from the Austrian Science
Fund (FWF) through the START project Y879-N27,
the project P 31339-N27, and the Zukunftskolleg
ZK03. H.Y. was supported by JSPS Overseas Re-
search Fellowships and JST, PRESTO Grant Number
JPMJPR201A, Japan.

References
[1] Jonathan P. Dowling and Gerard J. Milburn,

Quantum technology: the second quantum revo-
lution, Phil. Trans. R. Soc. A 361, 1655 (2003),
arXiv:quant-ph/0206091.

[2] Michael Epping, Hermann Kampermann, Chiara
Macchiavello, and Dagmar Bruß, Multi-partite
entanglement can speed up quantum key distribu-
tion in networks, New J. Phys. 19, 093012 (2017),
arXiv:1612.05585.

[3] Matej Pivoluska, Marcus Huber, and Mehul Ma-
lik, Layered quantum key distribution, Phys. Rev.
A 97, 032312 (2018), arXiv:1709.00377.

[4] Jérémy Ribeiro, Gláucia Murta, and Stephanie
Wehner, Fully device-independent conference key
agreement, Phys. Rev. A 97, 022307 (2018),
arXiv:1708.00798.

[5] Stefan Bäuml and Koji Azuma, Fundamen-
tal limitation on quantum broadcast networks,
Quantum Sci. Technol. 2, 024004 (2017),
arXiv:1609.03994.

[6] Géza Tóth, Multipartite entanglement and high-
precision metrology, Phys. Rev. A 85, 022322
(2012), arXiv:1006.4368.

[7] Andrew J. Scott, Multipartite entanglement,
quantum-error-correcting codes, and entangling
power of quantum evolutions, Phys. Rev. A 69,
052330 (2004), arXiv:quant-ph/0310137.

[8] Dagmar Bruß and Chiara Macchiavello, Mul-
tipartite entanglement in quantum algorithms,
Phys. Rev. A 83, 052313 (2011), arXiv:1007.4179.

[9] Robert Raussendorf and Hans J. Briegel, A One-
Way Quantum Computer, Phys. Rev. Lett. 86,
5188 (2001), arXiv:quant-ph/0010033.

[10] Hans J. Briegel and Robert Raussendorf, Per-
sistent Entanglement in Arrays of Interacting
Particles, Phys. Rev. Lett. 86, 910 (2001),
arXiv:quant-ph/0004051.

[11] Leonid Gurvits, Classical complexity and quan-
tum entanglement, J. Comput. Syst. Sci. 69,
448 (2004), Special Issue on STOC 2003,
arXiv:quant-ph/0303055.

[12] F. Verstraete, J. Dehaene, B. De Moor, and
H. Verschelde, Four qubits can be entangled in
nine different ways, Phys. Rev. A 65, 052112
(2002), arXiv:quant-ph/0109033.

[13] Andreas Osterloh and Jens Siewert, Construct-
ing n-qubit entanglement monotones from anti-
linear operators, Phys. Rev. A 72, 012337 (2005),
arXiv:quant-ph/0410102.

[14] Julio I. de Vicente, Cornelia Spee, and Barbara
Kraus, Maximally Entangled Set of Multipartite
Quantum States, Phys. Rev. Lett. 111, 110502
(2013), arXiv:1305.7398.

[15] Katharina Schwaiger, David Sauerwein, Martí
Cuquet, Julio I. de Vicente, and Barbara
Kraus, Operational Multipartite Entanglement

Accepted in Quantum 2022-04-16, click title to verify. Published under CC-BY 4.0. 7

https://doi.org/10.1098/rsta.2003.1227
http://arxiv.org/abs/quant-ph/0206091
https://doi.org/10.1088/1367-2630/aa8487
http://arxiv.org/abs/1612.05585
https://doi.org/10.1103/PhysRevA.97.032312
https://doi.org/10.1103/PhysRevA.97.032312
http://arxiv.org/abs/1709.00377
https://doi.org/10.1103/PhysRevA.97.022307
http://arxiv.org/abs/1708.00798
https://doi.org/10.1088/2058-9565/aa6d3c
http://arxiv.org/abs/1609.03994
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevA.85.022322
http://arxiv.org/abs/1006.4368
https://doi.org/10.1103/PhysRevA.69.052330
https://doi.org/10.1103/PhysRevA.69.052330
http://arxiv.org/abs/quant-ph/0310137
https://doi.org/10.1103/PhysRevA.83.052313
http://arxiv.org/abs/1007.4179
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
http://arxiv.org/abs/quant-ph/0010033
https://doi.org/10.1103/PhysRevLett.86.910
http://arxiv.org/abs/quant-ph/0004051
https://doi.org/10.1016/j.jcss.2004.06.003
https://doi.org/10.1016/j.jcss.2004.06.003
http://arxiv.org/abs/quant-ph/0303055
https://doi.org/10.1103/PhysRevA.65.052112
https://doi.org/10.1103/PhysRevA.65.052112
http://arxiv.org/abs/quant-ph/0109033
https://doi.org/10.1103/PhysRevA.72.012337
http://arxiv.org/abs/quant-ph/0410102
https://doi.org/10.1103/PhysRevLett.111.110502
https://doi.org/10.1103/PhysRevLett.111.110502
http://arxiv.org/abs/1305.7398


Measures, Phys. Rev. Lett. 115, 150502 (2015),
arXiv:1503.00615.

[16] Julio I. de Vicente, Cornelia Spee, David Sauer-
wein, and Barbara Kraus, Entanglement ma-
nipulation of multipartite pure states with finite
rounds of classical communication, Phys. Rev. A
95, 012323 (2017), arXiv:1607.05145.

[17] C. Spee, J. I. de Vicente, D. Sauerwein, and
B. Kraus, Entangled Pure State Transformations
via Local Operations Assisted by Finitely Many
Rounds of Classical Communication, Phys. Rev.
Lett. 118, 040503 (2017), arXiv:1606.04418.

[18] David Sauerwein, Nolan R. Wallach, Gilad Gour,
and Barbara Kraus, Transformations among
Pure Multipartite Entangled States via Local Op-
erations are Almost Never Possible, Phys. Rev.
X 8, 031020 (2018), arXiv:1711.11056.

[19] Géza Tóth and Otfried Gühne, Entanglement de-
tection in the stabilizer formalism, Phys. Rev. A
72, 022340 (2005), arXiv:quant-ph/0501020.

[20] Nicolai Friis, Giuseppe Vitagliano, Mehul Malik,
and Marcus Huber, Entanglement Certification
From Theory to Experiment, Nat. Rev. Phys. 1,
72 (2019), arXiv:1906.10929.

[21] Nicolai Friis, Oliver Marty, Christine Maier, Cor-
nelius Hempel, Milan Holzäpfel, Petar Jurce-
vic, Martin B. Plenio, Marcus Huber, Christian
Roos, Rainer Blatt, and Ben Lanyon, Obser-
vation of Entangled States of a Fully Controlled
20-Qubit System, Phys. Rev. X 8, 021012 (2018),
arXiv:1711.11092.

[22] Michał Horodecki, Paweł Horodecki, and
Ryszard Horodecki, Separability of mixed states:
necessary and sufficient conditions, Phys. Lett.
A 223, 25 (1996), arXiv:quant-ph/9605038.

[23] Asher Peres, Separability Criterion for Density
Matrices, Phys. Rev. Lett. 77, 1413 (1996),
arXiv:quant-ph/9604005.

[24] Marcus Huber and Ritabrata Sengupta, Wit-
nessing Genuine Multipartite Entanglement with
Positive Maps, Phys. Rev. Lett. 113, 100501
(2014), arXiv:1404.7449.

[25] Fabien Clivaz, Marcus Huber, Ludovico Lami,
and Gláucia Murta, Genuine-multipartite entan-
glement criteria based on positive maps, J. Math.
Phys. 58, 082201 (2017), arXiv:1609.08126.

[26] Andrea Rodriguez-Blanco, Alejandro Bermudez,
Markus Müller, and Farid Shahandeh, Efficient
and Robust Certification of Genuine Multipartite
Entanglement in Noisy Quantum Error Correc-
tion Circuits, PRX Quantum 2, 020304 (2021),
arXiv:2010.02941.

[27] Siddarth Koduru Joshi, Djeylan Aktas,
Sören Wengerowsky, Martin Lončarić, Se-
bastian Philipp Neumann, Bo Liu, Thomas
Scheidl, Guillermo Currás Lorenzo, Željko
Samec, Laurent Kling, Alex Qiu, Mohsen
Razavi, Mario Stipčević, John G. Rarity, and

Rupert Ursin, A trusted node–free eight-user
metropolitan quantum communication network,
Sci. Adv. 6 (2020), arXiv:1907.08229.

[28] Sören Wengerowsky, Siddarth Koduru Joshi,
Fabian Steinlechner, Hannes Hübel, and Ru-
pert Ursin, An entanglement-based wavelength-
multiplexed quantum communication network,
Nature 564, 225 (2018), arXiv:1801.06194.

[29] Sebastian Ecker, Frédéric Bouchard, Lukas
Bulla, Florian Brandt, Oskar Kohout, Fabian
Steinlechner, Robert Fickler, Mehul Malik, Ye-
lena Guryanova, Rupert Ursin, and Mar-
cus Huber, Overcoming Noise in Entanglement
Distribution, Phys. Rev. X 9, 041042 (2019),
arXiv:1904.01552.

[30] Xiao-Min Hu, Wen-Bo Xing, Bi-Heng Liu, Yun-
Feng Huang, Chuan-Feng Li, Guang-Can Guo,
Paul Erker, and Marcus Huber, Efficient gener-
ation of high-dimensional entanglement through
multipath down-conversion, Phys. Rev. Lett. 125,
090503 (2020), arXiv:2004.09964.

[31] Hayata Yamasaki, Alexander Pirker, Mio Murao,
Wolfgang Dür, and Barbara Kraus, Multipartite
entanglement outperforming bipartite entangle-
ment under limited quantum system sizes, Phys.
Rev. A 98, 052313 (2018), arXiv:1808.00005.

[32] Miguel Navascues, Elie Wolfe, Denis Rosset, and
Alejandro Pozas-Kerstjens, Genuine Network
Multipartite Entanglement, Phys. Rev. Lett. 125,
240505 (2020), arXiv:2002.02773.

[33] Tristan Kraft, Sébastien Designolle, Christina
Ritz, Nicolas Brunner, Otfried Gühne, and Mar-
cus Huber, Quantum entanglement in the trian-
gle network, Phys. Rev. A 103, L060401 (2021),
arXiv:2002.03970.

[34] Gláucia Murta, Federico Grasselli, Hermann
Kampermann, and Dagmar Bruß, Quantum con-
ference key agreement: A review, Adv. Quantum
Technol. 3, 2000025 (2020), arXiv:2003.10186.

[35] Marcus Huber and Martin Plesch, Purification of
genuine multipartite entanglement, Phys. Rev. A
83, 062321 (2011), arXiv:1103.4294.

[36] Otfried Gühne and Géza Tóth, Entangle-
ment detection, Phys. Rep. 474, 1 (2009),
arXiv:0811.2803.

[37] Szilárd Szalay, k-stretchability of entangle-
ment, and the duality of k-separability and
k-producibility, Quantum 3, 204 (2019),
arXiv:1906.10798.

[38] Seyed Mohammad Hashemi Rafsanjani, Marcus
Huber, Curtis J. Broadbent, and Joseph H.
Eberly, Genuinely multipartite concurrence of
N -qubit X matrices, Phys. Rev. A 86, 062303
(2012), arXiv:1208.2706.

[39] Zhi-Hao Ma, Zhi-Hua Chen, Jing-Ling Chen,
Christoph Spengler, Andreas Gabriel, and Mar-
cus Huber, Measure of genuine multipartite en-

Accepted in Quantum 2022-04-16, click title to verify. Published under CC-BY 4.0. 8

https://doi.org/10.1103/PhysRevLett.115.150502
http://arxiv.org/abs/1503.00615
https://doi.org/10.1103/PhysRevA.95.012323
https://doi.org/10.1103/PhysRevA.95.012323
http://arxiv.org/abs/1607.05145
https://doi.org/10.1103/PhysRevLett.118.040503
https://doi.org/10.1103/PhysRevLett.118.040503
http://arxiv.org/abs/1606.04418
https://doi.org/10.1103/PhysRevX.8.031020
https://doi.org/10.1103/PhysRevX.8.031020
http://arxiv.org/abs/1711.11056
https://doi.org/10.1103/PhysRevA.72.022340
https://doi.org/10.1103/PhysRevA.72.022340
http://arxiv.org/abs/quant-ph/0501020
https://doi.org/10.1038/s42254-018-0003-5
https://doi.org/10.1038/s42254-018-0003-5
http://arxiv.org/abs/1906.10929
https://doi.org/10.1103/PhysRevX.8.021012
http://arxiv.org/abs/1711.11092
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
http://arxiv.org/abs/quant-ph/9605038
https://doi.org/10.1103/PhysRevLett.77.1413
http://arxiv.org/abs/quant-ph/9604005
https://doi.org/10.1103/PhysRevLett.113.100501
https://doi.org/10.1103/PhysRevLett.113.100501
http://arxiv.org/abs/1404.7449
https://doi.org/10.1063/1.4998433
https://doi.org/10.1063/1.4998433
http://arxiv.org/abs/1609.08126
https://doi.org/10.1103/PRXQuantum.2.020304
http://arxiv.org/abs/2010.02941
https://doi.org/10.1126/sciadv.aba0959
http://arxiv.org/abs/1907.08229
https://doi.org/10.1038/s41586-018-0766-y
http://arxiv.org/abs/1801.06194
https://doi.org/10.1103/PhysRevX.9.041042
http://arxiv.org/abs/1904.01552
https://doi.org/ 10.1103/PhysRevLett.125.090503
https://doi.org/ 10.1103/PhysRevLett.125.090503
http://arxiv.org/abs/2004.09964
https://doi.org/10.1103/PhysRevA.98.052313
https://doi.org/10.1103/PhysRevA.98.052313
http://arxiv.org/abs/1808.00005
https://doi.org/10.1103/PhysRevLett.125.240505
https://doi.org/10.1103/PhysRevLett.125.240505
http://arxiv.org/abs/2002.02773
https://doi.org/10.1103/PhysRevA.103.L060401
http://arxiv.org/abs/2002.03970
https://doi.org/10.1002/qute.202000025
https://doi.org/10.1002/qute.202000025
http://arxiv.org/abs/2003.10186
https://doi.org/10.1103/PhysRevA.83.062321
https://doi.org/10.1103/PhysRevA.83.062321
http://arxiv.org/abs/1103.4294
https://doi.org/10.1016/j.physrep.2009.02.004
http://arxiv.org/abs/0811.2803
https://doi.org/10.22331/q-2019-12-02-204
http://arxiv.org/abs/1906.10798
https://doi.org/10.1103/PhysRevA.86.062303
https://doi.org/10.1103/PhysRevA.86.062303
http://arxiv.org/abs/1208.2706


tanglement with computable lower bounds, Phys.
Rev. A 83, 062325 (2011), arXiv:1101.2001.

[40] Ludovico Lami and Marcus Huber, Bipartite de-
polarizing channels, J. Math. Phys. 57, 092201
(2016), arXiv:1603.02158.

[41] David Schmid, Denis Rosset, and Francesco
Buscemi, The type-independent resource the-
ory of local operations and shared randomness,
Quantum 4, 262 (2020), arXiv:1909.04065.

[42] Kohdai Kuroiwa and Hayata Yamasaki, Gen-
eral Quantum Resource Theories: Distillation,
Formation and Consistent Resource Measures,
Quantum 4, 355 (2020), arXiv:2002.02458.

[43] Kohdai Kuroiwa and Hayata Yamasaki, Asymp-
totically consistent measures of general quantum
resources: Discord, non-Markovianity, and non-
Gaussianity, Phys. Rev. A 104, L020401 (2021),
arXiv:2103.05665.

Appendix
The appendices are organised as follows. In Appendix A, we analyse which values of the parameter allow
for a biseparable decomposition of two copies of the three-qubit isotropic Greenberger-Horne-Zeilinger (GHZ)
states. In Appendix B, we study the positive-partial-transpose (PPT) criterion for isotropic GHZ states. In
Appendix C, we show that multi-copy activation of genuine multipartite entanglement (GME) is possible from
PPT bound entanglement.

A Biseparable decomposition of two-copy three-qubit isotropic GHZ states
In this appendix we analyse which values of the parameter p allow for a biseparable decomposition of two copies
of the three-qubit isotropic GHZ states. To be more precise, we look for a biseparable decomposition with
respect to the partition A1B1|A2B2|A3B3 of the state ρ3(p)⊗2, where

ρ3(p) = p |GHZ3〉〈GHZ3| + (1− p) 1
23123 (16)

is the three-qubit isotropic GHZ state defined in the main text.
To construct a biseparable decomposition, we first construct separable states for two or four qubits. We then

map these states to different six-qubit states in such a way that all resulting six-qubit states are separable with
respect to one of the bipartitions

A1B1|A2B2A3B3,A1B1A2B2|A3B3,A2B2|A1B1A3B3. (17)

For convenience of notation, we henceforth reorder the subsystems to A1B1A2B2A3B3. We then group together
these different states to define biseparable states for the whole six-qubit system. This allows us to rewrite the
state ρ3(p)⊗2 as a convex sum of these biseparable states and a diagonal matrix. Finally, we find conditions for
which this diagonal matrix has only non-negative entries, i.e., is positive semi-definite and thus itself a state.

Let us begin by defining the separable two-qubit state

γ = 1
4(|++〉〈++|+ |−−〉〈−−|+ |rl〉〈rl|+ |lr〉〈lr|), (18)

where |+〉 = (|0〉 + |1〉)/
√

2, |−〉 = (|0〉 − |1〉)/
√

2, |r〉 = (|0〉 − i |1〉)/
√

2 and |l〉 = (|0〉 + i |1〉)/
√

2. We
partition the six-qubit space A1B1A2B2A3B3 into two subsystems C and D in such a way that the bipartition
C|D coincides with one of the three bipartitions in (17). We then define a map E from a two-qubit state space
to the six-qubit space A1A2A3B1B2B3 as the unique linear map such that |00〉 → |ii′〉, |01〉 → |ij′〉, |10〉 → |ji′〉
and |11〉 → |jj′〉, where |i〉 and |j〉 are orthogonal states of subsystem C and |i′〉 and |j′〉 are orthogonal states
of subsystem D. Applying this map to the two-qubit separable state γ above, we have a six-qubit state E(γ)
that is separable across the cut C|D by construction. In the following we will consider only such embeddings
E that map |00〉, |01〉, |10〉 and |11〉 onto four of the standard-basis states of the six-qubit space. For example
consider the partition A1B1A2B2|A3B3 and the embedding E that maps |00〉 → |000000〉, |01〉 → |000001〉,
|10〉 → |010100〉 and |11〉 → |010101〉. The embedded state then reads

E(γ) = 1
4(|000000〉〈000000|+ |000000〉〈010101|+ |010101〉〈000000|+ |010101〉〈010101|

+ |000001〉〈000001|+ |010100〉〈010100|). (19)

For every index m running from 1 to 64, we let |m〉 = |i1i2i3i4i5i6〉 denote a standard-basis state of
A1B1A2B2A3B3 such that

m = 32i1 + 16i2 + 8i3 + 4i4 + 2i5 + i6 + 1, (20)
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that is,m is the decimal representation of the number represented by the bit string i1i2i3i4i5i6. Let Em1,m2,m3,m4

be the linear map from a two-qubit space to the previously considered six-qubit space such that

|00〉 7→ |m1〉 , (21a)
|01〉 7→ |m2〉 , (21b)
|10〉 7→ |m3〉 , (21c)
|11〉 7→ |m4〉 . (21d)

We then define

γ(m1,m2,m3,m4) = Em1,m2,m3,m4(γ). (22)

For example, the state (19) is denoted by γ(1, 2, 21, 22) = E1,2,21,22(γ). Note that not all combinations
m1,m2,m3,m4 define a two-qubit subspace across the bipartitions in (17), and among all subspaces, we are
only interested in those pertaining to different parties. With this notation, we introduce the following states

Γ1 = 1
24[γ(2, 10, 36, 44) + γ(2, 12, 34, 44) + γ(33, 37, 50, 54) + γ(3, 7, 20, 24) + γ(3, 8, 19, 24)

+γ(5, 7, 45, 47) + γ(5, 15, 37, 47) + γ(9, 10, 29, 30) + γ(9, 14, 25, 30) + γ(18, 20, 58, 60)

+γ(18, 28, 50, 60) + γ(41, 45, 58, 62) + γ(41, 46, 57, 62) + γ(21, 29, 55, 63) + γ(21, 31, 53, 63)

+γ(35, 36, 55, 56) + γ(35, 40, 51, 56) + γ(6, 8, 46, 48) + γ(6, 14, 40, 48) + γ(11, 12, 31, 31)

+γ(11, 15, 28, 32) + γ(17, 19, 57, 59) + γ(17, 25, 51, 59) + γ(33, 34, 53, 54)],

(23)

Γ2 = 1
12[γ(1, 2, 21, 22) + γ(1, 5, 18, 22) + γ(1, 6, 17, 22) + γ(1, 3, 41, 43) + γ(1, 9, 35, 43)

+γ(1, 11, 33, 43) + γ(22, 24, 62, 64) + γ(22, 30, 56, 64) + γ(22, 32, 54, 64) + γ(43, 44, 63, 64)

+γ(43, 47, 60, 64) + γ(43, 48, 59, 64)].

(24)

With the same notation as before we define the four-qubit separable state

σ = 1
16(|+ + ++〉〈+ + ++| + |+−+−〉〈+−+−|+ |−+−+〉〈−+−+| + |− − −−〉〈− −−−|

+|+r + l〉〈+r + l| + |+l + r〉〈+l + r|+ |−r − l〉〈−r − l| + |−l − r〉〈−l − r|

+|r + l+〉〈r + l+| + |r − l−〉〈r − l−|+ |l + r+〉〈l + r+| + |l − r−〉〈l − r−|

+|rrll〉〈rrll| + |rllr〉〈rllr|+ |lrrl〉〈lrrl| + |llrr〉〈llrr|),

(25)

shared between three parties. It can be split in three different ways: σA1B1A2A3 , σA1A2B2A3 and σA1A2A3B3 .
Next, we define the biseparable six-qubit state

Σ = 1
3(U1σA1B1A2A3U

†
1 + U2σA1A2B2A3U

†
2 + U3σA1A2A3B3U

†
3 ) (26)

where Uk are isometries of the form U1 |ij〉A2A3
= |iijj〉A2B2A3B3

, U2 |ij〉A1A3
= |iijj〉A1B1A3B3

and
U3 |ij〉A1A2

= |iijj〉A1B1A2B2
.

With this we can finally rewrite the two copies of the original state as

ρ(p)⊗2 = (1− 2p)2ρdiag + p(3− 7p)Γ1 + p(1− p)Γ2 + 4p2Σ, (27)

where ρdiag is a normalized diagonal matrix. With m defined as (20), the matrix 64(1 − 2p)2ρdiag has the
following entries:

m ρdiag(m,m)

1, 22, 43, 64 : (1− p)2,

2, 3, 5, 6, 9, 11, 17, 18, 21, 24, 30, 32, 33,
35, 41, 44, 47, 48, 54, 56, 59, 60, 62, 63 : 1− 10/3p+ 7/3p2,

4, 13, 16, 23, 26, 27, 38, 39, 42, 49, 52, 61 : 1− 2p− 13/3p2,

7, 8, 10, 12, 14, 15, 19, 20, 25, 28, 29, 31,
34, 36, 37, 40, 45, 46, 50, 51, 53, 55, 57, 58 : 1− 6p+ 31/3p2.
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The terms (1−p)2 and 1−6p+31/3p2 are positive for all values of p. The term 1−10/3p+7/3p2 is non-negative
for p ≤ 3/7 and p ≥ 1 and finally the term 1−2p−13/3p2 is non-negative for (3−4

√
3)/13 ≤ p ≤ (3+4

√
3)/13.

With this we have found a biseparable decomposition for all values −1/7 ≤ p ≤ (3 + 4
√

3)/13. From the bound
shown in the main text

p > p(2)
GME(N) :=

√
2N−1 − 1

2N−1 +
√

2N−1 − 1
, (28)

we know that all values above this bound are already GME.

B PPT criterion for isotropic GHZ states
The isotropic GHZ states defined in the main text can be rewritten as

ρ(p) = p |Φ+〉〈Φ+|A1Ã2
+ 1−p

2N 1A1⊗1Ã2
+ 1−p

2N 1A1⊗1Ã⊥2
= 1+p

2 ρ̃A1Ã2
+ 1−p

2
1

2N−1 1A1⊗1Ã⊥2 , (29)

where |Φ+〉A1Ã2
= 1√

2

(
|0〉A1

|0̃〉Ã2
+ |1〉A1

|1̃〉Ã2

)
with |̃i〉Ã2

=
⊗N

j=2 |i〉Aj
for i = 0, 1, 1Ã2

=
∑

i=0,1 |̃i〉〈̃i| and
1Ã⊥2

= 12N−1 − 1Ã2
. We are now interested in checking for which values of p the partial transpose of the

two-qubit state ρ̃A1Ã2
is positive semi-definite. Since the normalisation is irrelevant for this calculation, we can

instead consider the partial transpose of the unnormalised operator 1+p
2 ρ̃A1Ã2

whose partial transpose is given
by

( 1+p
2 ρ̃A1Ã2

)TÃ2 =



p
2 + 1−p

2N 0 0 0

0 1−p
2N

p
2 0

0 p
2

1−p
2N 0

0 0 0 p
2 + 1−p

2N


. (30)

The only potentially negative eigenvalue of this matrix is (1 − p)/2N − p/2 and we hence find that ρ̃A1Ã2
is

positive semi-definite for p ≤ pcrit := 1/(1 + 2N−1). Since ρ̃A1Ã2
is a two-qubit state, the PPT criterion is

necessary and sufficient for separability, and the state ρ(p) hence has a separable decomposition with respect
to the bipartition A1|A2 . . .AN for p ≤ pcrit.

Since ρ(p) is invariant under exchanges of any qubits, this separability threshold applies for any bipartition
of separating any one qubit from the remaining N − 1 qubits. Moreover, it is easy to see that the arguments
presented above hold also for any bipartition into M and N − M qubits by choosing suitable single-qubit
subspaces in both the M -qubit and (M −N)-qubit Hilbert spaces.

We also note that the threshold value pcrit for partition-separability trivially coincides with the PPT threshold
for any chosen bipartition of ρ(p) because the only non-diagonal 2×2-block of the partial transpose is always of
the form of the right-hand side of Eq. (30). In particular, this implies that all states ρ(p) are non-PPT (NPT)
entangled across any bipartition for p > pcrit and separable below this value. Consequently, there are no PPT
entangled isotropic GHZ states.

C PPT-triangle states and GME activation
To investigate whether multi-copy GME activation is possible from bound entanglement, we first consider a
biseparable three-party state with no distillable bipartite entanglement across any bipartition; i.e., the state is
positive under partial transposition across all cuts. Since the set of PPT states is convex, we may construct such
a state as a convex combination of terms where one party is uncorrelated with the others, while the remaining
two parties share a PPT entangled state, i.e.,

ρA1A2A3 = p1ρA1 ⊗ ρPPT
A2A3

+ p2ρA2 ⊗ ρPPT
A1A3

+ p3ρA3 ⊗ ρPPT
A1A2

, (31)

where
∑

i pi = 1, pi ≥ 0 and ρPPT
AiAj

for i, j ∈ {1, 2, 3} are PPT entangled states. Here we note that the existence
of such a decomposition guarantees biseparability, but it does not a priori rule out that such a state may be
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partition-separable (or even fully separable). If ρA1A2A3 is separable with respect to one or several of the
bipartitions A1|A2A3, A1A2|A3 and A2|A1A3, then GME activation is not possible for any number of copies.
However, as we show here, for certain choices of the ρPPT

AiAj
and ρAk

, three copies of ρA1A2A3 are GME, which
thus also shows that the single-copy states in question are not partition-separable (or fully separable).

To continue, let us consider the particular situation where each of the three parties Ai for i = 1, 2, 3 consists
of three subsystems A(j)

i for j = 1, 2, 3. In this situation, a particular example for a state of the form of Eq. (31)
is given by

ρA1A2A3 =
∑

i=1,2,3
i6=j 6=k 6=i

j<k

pi ρA(i)
i

⊗ ρPPT

A(i)
j
A(i)

k

⊗
3⊗

m,n=1
n6=i

|0〉〈0|A(n)
m
,

where the states ρPPT

A(i)
j
A(i)

k

are PPT entangled states that will be specified later. Now, suppose that three copies,

ρA1A2A3 , ρB1B2B3 , and ρC1C2C3 , are shared. By projecting the subsystems A(1)
1 of the first copy, B(2)

2 of the
second copy, and C(3)

3 of the third copy into the subspaces orthogonal to the states |0〉A(1)
1
, |0〉B(2)

2
, and |0〉C(3)

3
,

respectively, the three parties can (deterministically) prepare the states ρPPT

A(1)
2 A

(1)
3
, ρPPT

B(2)
1 B

(2)
3
, and ρPPT

C(3)
1 C

(3)
2

. All
other subsystems can be discarded. Consequently, three copies of ρA1A2A3 allow the parties to establish a state
of the form

ρ∆PPT
O1O2O3

:= ρPPT
A2A3

⊗ ρPPT
B1B3

⊗ ρPPT
C1C2

(32)

via LOCC. For ease of notation we have dropped the superscripts identifying the particular subsystems, e.g.,
using the label Ai instead of A(j)

i . We call a state in this form a PPT-triangle state, where the parties 1, 2, and
3 have access to systems B1C1, A2C2, and A3B3, respectively. We further note that every such PPT-triangle
state can be created via LOCC from three copies of a biseparable state of the form of Eq. (31).

Therefore, we reach the following claim: if there is a GME state that is PPT-triangle, then multi-copy GME
activation is achievable for (some) biseparable states that are PPT across every cut. Consequently, the problem
reduces to proving the existence of a PPT-triangle state that exhibits GME. To find such a state, we construct
a one-parameter family of two-qutrit states given by

ρPPT
XY (p) := 1

Np

[
(|00〉+ |11〉+ |22〉)(〈00|+ 〈11|+ 〈22|) + p(|01〉〈01|+ |12〉〈12|+ |20〉〈20|)

+ 1
p (|02〉〈02|+ |10〉〈10|+ |21〉〈21|)

]
, (33)

for all p > 0, where X and Y labels the first and second qutrit, respectively, Np = 3(1 + p + 1
p ) > 0 is a

normalization constant. The partial transpose of ρPPT
XY (p) has eigenvalues λ1 = 0, λ2 = Np > 0, and λ3 =

Np(p + 1
p ) > 0, each thrice degenerate, and ρPPT

XY (p) is hence PPT. We can then choose the PPT states in
Eq. (32) from this family of two-qutrit states, such that

ρ∆PPT
O1O2O3

(x, y, z) := ρPPT
A2A3

(x)⊗ ρPPT
B1B3

(y)⊗ ρPPT
C1C2

(z). (34)

To show that the state is GME with respect to the partition O1|O2|O3 it suffices to detect GME between
subspaces D1, D2, and D3 of O1, O2, and O3, respectively. Specifically, we consider the single-qutrit subspaces
D1, D2, and D3 spanned by {|ii〉B1C1}i=0,1,2, {|jj〉A2C2}j=0,1,2, and {|kk〉A3B3}k=0,1,2, respectively, and thus the
projection of ρ∆PPT

O1O2O3
(x, y, z) onto the three-qutrit subspace spanned by {|ii〉B1C1⊗|jj〉A2C2⊗|kk〉A3B3}i,j,k=0,1,2.

We let ρ∆PPT
D1D2D3

(x, y, z) denote the resulting state.
To this state, we apply a three-party GME witness W3 (see [24, example 2]) based on the lifted Choi-map

witnesses from [25] of the form

W3 = |000〉〈000|+ |001〉〈001|+ |011〉〈011|+ |020〉〈020|+ |101〉〈101|+ |111〉〈111|+ |112〉〈112| (35)
+ |122〉〈122|+ |200〉〈200|+ |212〉〈212|+ |220〉〈220|+ |222〉〈222| − |000〉〈111| − |000〉〈222|
− |111〉〈222| − |111〉〈000| − |222〉〈000| − |222〉〈111|.

Applying it to our state yields the expression

Tr[W3 ρ
∆PPT
D1D2D3

(x, y, z)] = 3
NxNyNz

(xy+ z
x + yz − 1). (36)

We see that for certain values of x, y and z the expected value of the witness can be negative, e.g., for states
of the form ρ∆PPT

D1D2D3
(1, y, y) with 0 < y <

√
2− 1, thus detecting GME in this range.
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Finally, an observation that we can make about the PPT-triangle states in Eq. (34) is that the third tensor
factor ρPPT

C1C2
(z) is not even necessary to obtain GME. Indeed, the state

ρ∧PPT
A2A3B1B3

(x, y) = ρPPT
A2A3

(x)⊗ ρPPT
B1B3

(y) (37)

is GME for certain values of x and y. To show this it again suffices detecting GME on a subspace. Consider
the projection onto the three-qutrit subspace spanned by {⊗|i〉B1 ⊗ |j〉A2 |kk〉A3B3}i,j,k=0,1,2 and denote the
resulting state by ρ∧PPT

D1D2D3
(x, y). With the same witness W3 as before we obtain

Tr[W3 ρ
∧PPT
D1D2D3

(x, y)] = 3
NxNy

(x+ y + xy − 1). (38)

For instance, for x = y <
√

2−1, this expression becomes negative, thus detecting GME. We can thus conclude
that PPT entanglement across two out of the three cuts and two copies of the original state are already enough
for GME activation.
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