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We present an instance of a task of minimum-error discrimination of two qubit-qubit quantum channels
for which a sequential strategy outperforms any parallel strategy. We then establish two new classes of
strategies for channel discrimination that involve indefinite causal order and show that there exists a strict
hierarchy among the performance of all four strategies. Our proof technique employs a general method of
computer-assisted proofs. We also provide a systematic method for finding pairs of channels that showcase
this phenomenon, demonstrating that the hierarchy between strategies is not exclusive to our main example.
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The discrimination of physical operations is a task
related to the elementary ability to experimentally distin-
guish among different dynamics, or time evolutions, to
which physical systems are subjected. From a fundamental
perspective, the capacity to test and discriminate between
hypotheses lies at the core of statistical analysis and
constitutes one of the pillars of the scientific method.
From a more practical standpoint, the discrimination of
physical operations comes into play in problems such as the
identification of cause-effect relations [1], computational
complexity analysis of oracle-based algorithms [2–5],
certification of circuit elements [6–8], and in tasks related
to metrology [9].
Within the context of quantum physics, pioneering work

connecting hypothesis testing with discrimination of quan-
tum objects dates back to Holevo and Helstrom [10,11].
Most of these initial results concern the discrimination of
quantum states, while developing concepts and methods
relevant to the fundamental problem of discriminating
between quantum operations—a task also referred to as
quantum channel discrimination. A plethora of interesting
results on this topic has since been demonstrated [12–20].
In channel discrimination tasks that allow multiple inter-
actions, different discrimination strategies become relevant,
the most common being parallel and sequential (i.e.,
adaptive). For pairs of unitary channels, optimal mini-
mum-error discrimination is achieved by parallel schemes
[21]. The advantage of sequential strategies first became
apparent for a task regarding two qubit-ququart entangle-
ment-breaking channels [22], which cannot transmit quan-
tum information [23]. Recent results also indicate this

advantage [8,24–26], including its numerical observation in
a discrimination task of two qubit-qubit channels [27].
In the related task of discriminating two nonsignaling

bipartite channels, a more general strategy constructed from
the quantum switch [28], involving indefinite causal order,
provides an advantage over causal (sequential and parallel)
strategies, even allowing for perfect discrimination [29].
This phenomenon hints that indefinite causal order could
be useful for tasks of channel discrimination, similarly to
how it is advantageous for quantum computation [30],
communication complexity [31,32], and inversion of
unknown unitary operations [33].
In this Letter, we have two main contributions to the

study of channel discrimination. The first is the rigorous
demonstration of the advantage of sequential over parallel
strategies. Our example concerns the simplest scenario of
channel discrimination—between two qubit-qubit channels
using two copies—and channels with nonzero quantum
capacity—an amplitude-damping and a bit-flip channel.
The second is the demonstration that strategies involving
indefinite causal order can outperform parallel and sequen-
tial ones for the same task of channel discrimination. In
order to do so, we define two new classes of discrimination
strategies that make use of indefinite causal order—which
we call separable and general. Together, these results
constitute a strict hierarchy between four strategies of
channel discrimination. To prove our results, we develop
a method of computer-assisted proofs.
The task of minimum-error channel discrimination

works as follows: With probability pi, Alice is given an
unknown quantum channel C̃i∶LðHIÞ → LðHOÞ, drawn
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from an ensemble E ¼ fpj; C̃jgNj¼1 that is known to her.

Being allowed to use a finite number of copies of C̃i, her
task is to determine which channel she received by
performing operations on it and guessing the value of
i ∈ f1;…; Ng. If Alice is allowed to use one copy of the
channel she received, the most general quantum operations
she could apply are to send part of a potentially entangled
state ρ ∈ LðHI ⊗ HauxÞ through the channel C̃i, and
jointly measure the output with a positive operator-valued
measure (POVM) M ¼ fMag;Ma ∈ LðHO ⊗ HauxÞ,
announcing the outcome of her measurement as her guess.
Then, her probability of correctly guessing the value i is
given by psucc ≔

P
N
i¼1 pi Tr½ðC̃i ⊗ 1̃ÞðρÞMi�, where 1̃ is

the identity map on LðHauxÞ. Alice can improve her
chances by optimizing her operations based on her knowl-
edge of the ensemble. Her maximal probability of success
is then given by p�

succ ≔ maxfρ;Mg psucc.
By means of the Choi-Jamiołkowski isomorphism (see

Ref. [34]) [35–37] one can represent a channel C̃ (a
completely positive, trace-preserving map) as a positive
semidefinite operator C ∈ LðHI ⊗ HOÞ, called “Choi
operator,” that satisfies C ≥ 0 and TrOC ¼ 1I , where
TrX denotes the partial trace over HX and 1X the identity
operator onHX. Using Choi operators and the link product
(see Ref. [38]) [39] to represent a concatenation of
operations, we can rewrite the maximal probability of
success as p�

succ ¼ maxfρ;Mg
P

N
i¼1 piCi � ρ �MT

i .
In principle, Alice could apply a more general strategy

by constructing the most general map that takes a channel
to a set of probability distributions. This map is defined by
the most general set of operators T ¼ fTigNi¼1; Ti ∈
LðHI ⊗ HOÞ that respect the relation pðijCÞ ¼ TrðCTiÞ
for all Choi operators of channels C, where fpðijCÞg is a
probability distribution. This set of operators has been
characterized as a general tester, a set T ¼ fTig that
satisfies Ti ≥ 0∀i and

P
i Ti ¼ σ ⊗ 1O, where σ ∈

LðHIÞ is a quantum state [17,39] (see also Supplemental
Material [40]). Remarkably, it has been shown that every
general tester has a quantum realization. Namely, from any
general tester a state and measurement can always be
constructed, in such a way that each tester element is
recovered as Ti ¼ ρ �MT

i . This mathematical equivalence
allows for a simpler characterization of Alice’s strategies,
who can now optimize over general testers T to achieve a
maximal probability of success that is equivalently given by
p�
succ ¼ maxfTg

P
N
i¼1 piTrðTiCiÞ (see Ref. [50]).

Now let us analyze the more interesting case where Alice
has access to two copies of the channel Ci. With two
copies, Alice has the freedom of choosing how to concat-
enate these channels in order to gain more information
about them.
One option is to apply the two copies of the unknown

channel in parallel, by sending a joint state ρ ∈ LðHI1 ⊗
HI2 ⊗ HauxÞ through both copies of Ci and then measuring

the output with a POVM M ¼ fMig;Mi ∈ LðHO1 ⊗
HO2 ⊗ HauxÞ, where HI1 (HI2) represents the input space
of the first (second) copy of Ci, and equivalently for the
output spaces. Just like in the one-copy case, this strategy
can be expressed by a two-copy parallel tester, a set of
operators Tpar ¼ fTpar

i g that satisfy linear constraints
defined below, and that always accepts a quantum reali-
zation according to Tpar

i ¼ ρ �MT
i [39] [see Fig. 1(a)]. In

the following we use the notation XA ≔ TrXA ⊗ ð1X=dXÞ
and dX ¼ dimðHXÞ.
Definition 1 (two-copy parallel tester).—A parallel tester

is a set of linear operators Tpar ¼ fTpar
i gNi¼1; T

par
i ∈

LðHI1O1I2O2Þ such that Tpar
i ≥ 0, ∀i and Wpar ≔

P
i T

par
i

satisfies TrðWparÞ ¼ dO1
dO2

, and

Wpar ¼ O1O2
Wpar: ð1Þ

Wpar is called a parallel process.
More generally, Alice could use her two copies of Ci in a

sequential manner, first sending a state ρ ∈ LðHI1 ⊗
Haux1Þ through the first copy of Ci, next applying
to the output a general channel Ẽ∶LðHO1 ⊗ Haux1Þ →
LðHI2 ⊗ Haux2Þ, then sending part of the output of channel
Ẽ through the second copy of Ci, and finally measuring the
output with a POVM M ¼ fMig;Mi ∈ LðHO2 ⊗ Haux2Þ.
Analogously to the parallel case, the tester associated to this
strategy—a sequential tester Tseq ¼ fTseq

i g expressed as
Tseq
i ¼ ρ � E �MT

i , where E ∈ LðHO1 ⊗ Haux1 ⊗ HI2 ⊗
Haux2Þ is the Choi operator of map Ẽ, meaning it can al-
ways be realized by quantum circuits [39] [see Fig. 1(b)]—
has been characterized as

(a)

(b)

(c)

FIG. 1. Schematic representation of the realization of every
two-copy (a) parallel tester Tpar with a state ρ and a POVM M;
(b) sequential tester Tseq with a state ρ, a channel Ẽ, and a POVM
M; and (c) general tester Tgen with a process matrix W and a
POVM M.
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Definition 2 (two-copy sequential tester).—A sequential
tester is a set of linear operators Tseq ¼ fTseq

i gNi¼1; T
seq
i ∈

LðHI1O1I2O2Þ such that Tseq
i ≥ 0, ∀i and Wseq ≔

P
i T

seq
i

satisfies TrðWseqÞ ¼ dO1
dO2

, and

Wseq ¼ O2
Wseq ð2Þ

I2O2
Wseq ¼ O1I2O2

Wseq: ð3Þ
Wseq is called a sequential process.
Parallel and sequential strategies have long been

regarded as the most general strategies for channel dis-
crimination. We now propose more general strategies than
sequential ones, that arise from the following reasoning: In
the same fashion of the definition of the general one-copy
tester, one may define a general two-copy tester as the
most general set of operators Tgen ¼ fTgen

i g that map a pair
of channels, represented by their Choi operators CA ∈
LðHI1 ⊗ HO1Þ and CB ∈ LðHI2 ⊗ HO2Þ, to a valid
probability distribution according to pðijCA; CBÞ ¼
Tr½ðCA ⊗ CBÞTgen

i �. It is shown in the Supplemental
Material [40] that this definition is equivalent to
Definition 3 (two-copy general tester).—A general tester

is a set of linear operators Tgen ¼ fTgen
i gNi¼1; T

gen
i ∈

LðHI1O1I2O2Þ such that Tgen
i ≥ 0, ∀i and Wgen ≔

P
i T

gen
i

satisfies TrðWgenÞ ¼ dO1
dO2

, and

I1O1
Wgen ¼ I1O1O2

Wgen ð4Þ

I2O2
Wgen ¼ O1I2O2

Wgen ð5Þ

Wgen ¼ O1
Wgen þ O2

Wgen − O1O2
Wgen: ð6Þ

Wgen is called a general process.
A general tester can be seen as the most general trans-

formation that acts globally on a pair of independent
channels, extracting probability distributions. In this sense,
a general tester is to a pair of channels as a POVM is to a
pair of states, and it can be analogously interpreted as a
“global measurement” of a pair of channels. Different from
parallel and sequential testers, the definition of general
testers does not take into account the order in which the
channels may be acted upon.
Both parallel and sequential processes are particular

cases of general processes [see Fig. 2(b)]. Nevertheless,
the formalism of process matrices shows that there are
general processes that do not respect a definite causal order
[51,52]—which is defined as a process being parallel,
sequential, or a classical mixture of sequential processes,
called “causally separable” processes, motivating the def-
inition of our final class of testers:
Definition 4 (two-copy separable tester).—A separable

tester is a set of linear operators Tsep ¼ fTsep
i gNi¼1, T

sep
i ∈

LðHI1O1I2O2Þ such that Tsep
i ≥ 0, ∀i and Wsep ≔

P
i T

sep
i

satisfies TrðWsepÞ ¼ dO1
dO2

and

Wsep ¼ qW1≺2 þ ð1 − qÞW2≺1; ð7Þ

where 0 ≤ q ≤ 1 andW1≺2ð2≺1Þ is a sequential process with
slot 1(2) coming before slot 2(1).Wsep is called a separable
process.
In our terminology, the set of separable processes is the

convex hull of the set of sequential processes whose slots
follow orders 1 ≺ 2 and 2 ≺ 1, while parallel processes are
those at the intersection of these sets [see Fig. 2(b)].
The definition of separable processes came from the idea

that one could plug two different channels CA and CB in the
two slots of process Wsep implementing a mixture of a
process that applies channel CA before CB with one that
applies CB before CA. One could then expect that this
classical mixture of orders should not be relevant for a
problem where the two channels being plugged into the
separable tester are identical: two copies of Ci.
Nonetheless, we show that separable testers indeed provide
an advantage over sequential testers, which hints at a more
complicated structure of separable testers than of separable
processes themselves. This advantage implies that sepa-
rable testers cannot be simply realized by ordered circuits
and classical randomness, and that the set of separable
testers is strictly larger than the convex hull of the set of
sequential testers with different orders [see Fig. 2(a)].
With our unified framework for channel discrimination

at hand, we can now define the maximal probability of
success under each of our four strategies by allowing Alice
to optimize over different classes of testers. The maximal
probability of successful discrimination of a channel
ensemble E ¼ fpi; Cig using two copies under strategy
S then reads as

PS ≔ max
fTSg

XN

i¼1

piTr ðTS
i C

⊗2
i Þ; ð8Þ

(a) (b)

FIG. 2. Graphical representation of the nesting relations be-
tween (a) the sets of all testers T S ≔ ½TS ;TS ¼ fTS

i g� and (b) the
sets of all processes WS ≔ ½WS ;WS ¼ P

i T
S
i �, where S repre-

sents parallel, sequential, separable, or general strategies.
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where S represents parallel, sequential, separable, or
general strategies. It is clear that these four strategies—
parallel, sequential, separable, and general—form a hier-
archy since each set of testers is a superset of the previous
one, implying the relation Ppar ≤ Pseq ≤ Psep ≤ Pgen for
any fixed ensemble. We show that, in fact, all these three
inequalities can be simultaneously strictly satisfied.
To compute the values of PS , we phrase the optimization

problems that define it in terms of semidefinite program-
ming (SDP). Essentially,

given fpi; Cig
maximize

X

i

piTrðTS
i C

⊗2
i Þ

subject to fTS
i g is a tester with strategyS: ð9Þ

This optimization can be equivalently solved by its dual
problem:

Given fpi; Cig
minimize λ

subject to piC
⊗2
i ≤ λW̄S ∀i; ð10Þ

where W̄S lies in the dual affine of the set of processesWS

(see Ref. [53]) (see the Supplemental Material [40]).
SDPs can be solved by efficient numerical packages

which, despite being in practice accurate, suffer from
imprecision that arises from the use of floating-point
variables [57,58]. In order to overcome this issue, we
provide in the Supplemental Material [40] an algorithm for
computer-assisted proofs (see Refs. [59,60] for other
examples). Using our method, we obtain rigorous upper
and lower bounds for PS, arriving at a result that has the
same mathematical rigor of an analytical proof.
Theorem 1.—In the simplest instance of a channel

discrimination task using k ¼ 2 copies, i.e., discrimination
between N ¼ 2 qubit-qubit channels, there exist ensembles
for which the maximal probability of successful discrimi-
nation of parallel, sequential, separable, and general strat-
egies obey the strict hierarchy

Ppar < Pseq < Psep < Pgen: ð11Þ

Sketch of the proof.—The proof is constructive and con-
siders the channel ensemble composed by p1 ¼ p2 ¼ ½, an
amplitude-damping channel C̃AD (see Ref. [61]) with
parameter γ ¼ 67=100, and a bit-flip channel C̃BF (see
Ref. [62]) with parameter η ¼ 87=100. We start by apply-
ing standard numerical packages to solve the primal SDP
[Eq. (9)] and obtain an ansatz for the optimal tester of each
strategy. From the numerically imperfect ansatz, we con-
struct a valid tester, following Algorithm 2 in the Suppl.
Material. We then compute probabilities of success with

these valid testers, which provide rigorous lower bounds for
the maximal probabilities of success. To calculate rigorous
upper bounds, we repeat this procedure, now taking as
ansatz the numerical solutions of the dual problems
[Eq. (10)] for dual affine processes, and following
Algorithm 1 in the Supplemental Material [40].
Applying this method, we computed the following bounds:
ð8346=10000Þ<Ppar<ð8347=10000Þ,ð8446=10000Þ<Pseq<
ð8447=10000Þ, ð8486=10000Þ<Psep<ð8487=10000Þ, and
ð8514=10000Þ < Pgen < ð8515=10000Þ. The clear gap
between strategies concludes the proof. ▪
Similar gaps can also be found for different ensembles of

amplitude-damping and bit-flip channels, and also for two
amplitude-damping channels, a problem which has been
previously studied [8,24–27]. Moreover, this phenomenon
is not particular to these channels. We have constructed a
simple method of sampling pairs of channels that present a
gap between all four strategies, for the case of qubit-qubit
channels, in approximately 94% of the rounds (see
Supplemental Material [40]).
Having demonstrated the theoretical advantage of these

strategies, we would now like to discuss their potential
implementation. As already mentioned, for parallel and
sequential strategies, it is known that from every tester one
can construct, in an algorithmic manner, a state, channel,
and measurement that constitute its quantum realization
[39]. Therefore, these testers can be physically imple-
mented with quantum circuits, as depicted in Figs. 1(a)
and 1(b).
For general testers, given a tester Tgen ¼ fTgen

i g, it can
be realized by a process W ≔

P
N
i¼1 T

gen
i ⊗ jiihijF ∈

LðHI1O1I2O2 ⊗ HFÞ, where HF represents the space of a
system in the common future of slots 1 and 2 of Tgen, and a
POVM M ¼ fMigi;Mi ¼ jiihij ∈ HF. Each general tester
element is recovered by Tgen

i ¼ W �MT
i . However, a

quantum realization of Tgen would then depend on the
ability of physically implementing any process W, as
depicted in Fig. 1(c). Unfortunately, at this point, the
physical implementation of general processes remains an
open question.
For separable testers, however, a physical implementa-

tion is known. Similar to the general case, every separable
tester can be recovered by a process W ≔

P
N
i¼1 T

sep
i ⊗

jiihijF and a POVM fMig;Mi ≔ jiihijF. However, when
constructed from separable testers, the process W always
satisfies the condition that TrFW ¼ P

N
i¼1 T

sep
i ¼ Wsep, that

is, they are (potentially nonseparable) processes that
become separable when the future space is traced out.
Such processes always lead to separable strategies, and can
be used to realize every separable tester. Remarkably, these
processes have recently been shown to be realized by
circuits that employ a coherent quantum control of causal
orders [63], implying that all separable strategies, including
the ones that we have shown to be advantageous, can be
physically implemented. One example of such a process
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that only leads to separable testers is the well-studied
quantum switch [28]. Nevertheless, we have not been able
to construct a discrimination task for which the testers
generated by the quantum switch specifically were
advantageous.
Conclusions.—We have demonstrated a new example of

the advantage of sequential over parallel strategies for a task
of minimum-error discrimination between two qubit-qubit
channels. We also established two new classes of strategies
that involve indefinite causal order and showed that they can
outperform causal ones. Moreover, we proved a strict
hierarchy between these four classes of strategies. Our main
example concerns the discrimination of an amplitude-damp-
ing and a bit-flip channel; however, we showed that this
phenomenon is not unique, by presenting a simple method
of constructing pairs of channels that, with very high
probability, respect this strict hierarchy. The main technique
we developed is a method of computer-assisted proofs that
finds immediate application in a plethora of physics prob-
lems that currently rely on numerical optimization.We hope
this method can contribute to paving the way to more
rigorous numerical proofs in quantum information science.
It is furthermore our hope that our demonstration of the
theoretical advantage of indefinite causal order for channel
discrimination will further motivate the investigation of
potential implementations of general processes.

The supporting code for this article are openly available
from [64].
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Here we present support material that complements the main text. It is structured as follows: Sec. I. Characterization
theorem for general testers, Sec. II. Semidefinite programming and dual affine spaces, Sec. III. Computer-assisted
proofs, and Sec. IV. Sampling general channels and the typicality of the hierarchy between discrimination strategies.

I. CHARACTERIZATION THEOREM FOR GENERAL TESTERS

We starting by demonstrating, for sake of completeness, the characterization of general one-copy testers that was
presented in the main text, in the language of our paper. This result is already known and follows from Ref. [1].

Theorem 2. Let T = {Ti}Ni=1, Ti ∈ L(HI ⊗HO), called a general one-copy tester, be the most general set of operators
that satisfy the relation

p(i|C) = Tr (Ti C) , (1)

for all Choi operators of quantum channels C ∈ L(HI ⊗HO), where {p(i|C)} is a set of probability distributions. Let
W :=

∑
i Ti. Then, T = {Ti} is a set of operators that satisfy

Ti ≥ 0 ∀ i (2)
Tr(W ) = dO (3)

W = OW. (4)

Proof. In order to guarantee that {p(i|C)} is a valid probability distribution, two conditions must be imposed: positivity
and normalization.

Positivity:

p(i|C) = Tr (Ti C) ≥ 0 ∀ i, C ≥ 0 ⇐⇒ Ti ≥ 0 ∀ i. (5)

Normalization: ∑
i

p(i|C) = Tr(
∑
i

Ti C) = Tr (W C) = 1 ∀ channels C, (6)

where C is the Choi operator of a quantum channel, and therefore of a trace-preserving map, which can be parametrized
as C = X −OX + 1

dO
, where X is a self-adjoint operator, using the same technique as in Appendix B of Ref. [2]. Then,

Tr[W (X −O X +
1
dO

)] = 1 ∀ self-adjoint X. (7)

We can split this in two cases: X = 0 and X 6= 0.
For X = 0:

Tr[W (X −O X +
1
dO

)] =
Tr(W )

dO
= 1 ⇐⇒ Tr(W ) = dO. (8)
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For X 6= 0:

Tr[W (X −O X +
1
dO

)] = Tr [W (X −O X)] + 1 = 1 ∀X 6= 0 (9)

⇐⇒ Tr [W (X −O X)] = 0 ∀X 6= 0 (10)
⇐⇒ Tr [(W −O W )X] = 0 ∀X 6= 0 ⇐⇒ W −O W = 0. (11)

The equivalence between Eqs. (10) and (11) is given by the self-duality of the ‘trace-and-replace’ map, namely
Tr[W OX] = Tr[OW X].

Together, conditions Tr(W ) = dO (Eq. (3)) and W =O W (Eq. (4)) imply that W can be written as W = σ ⊗ 1O,
where σ ∈ L(HI) is a normalized quantum state.

Now we prove a new characterization theorem, the one of general two-copy testers. In this case, we will need
additional hypotheses. One is the hypothesis that a tester may not only be able to act on two copies of the same
channel but also be able to act on two different, independent channels. This hypothesis is physically motivated in the
sense that, if a general tester is a device in a quantum lab that can act on two copies of the same channel, then one
should also be able to plug in two different channels and have it perform a meaningful physical operation. The second
is that these channels should be allowed to also act on auxiliary, potentially entangled, systems, and when a general
tester acts upon part of these channels, the operation it performs should still result in a valid probability distribution.
This last hypothesis is automatically satisfied in the one-copy case.

Formally, we have:

Theorem 3. Let TGEN = {TGEN
i }Ni=1, TGEN

i ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2), called a general two-copy tester, be the
most general set of operators that satisfy the relation

p(i|CA, CB , ρAB) = Tr
[
(TGEN
i ⊗ ρAB)(CA ⊗ CB)

]
, (12)

for all Choi operators of quantum channels CA ∈ L(HI1 ⊗HO1 ⊗Haux1) and CB ∈ L(HI2 ⊗HO2 ⊗Haux2), and for all
quantum states ρAB ∈ L(Haux1 ⊗Haux2), where {p(i|C)} is a set of probability distributions. Let WGEN :=

∑
i T

GEN
i .

Then, TGEN = {TGEN
i } is a set of operators that satisfy

TGEN
i ≥ 0 ∀ i (13)

Tr(WGEN) = dO1dO2 (14)

I1O1
WGEN =I1O1O2

WGEN (15)

I2O2
WGEN =O1I2O2

WGEN (16)

WGEN =O1 W
GEN +O2 W

GEN −O1O2 W
GEN. (17)

Proof. Again, in order to guarantee that {p(i|CA, CB)} is a valid probability distribution, the conditions of positivity
and normalization must be imposed.

Positivity:

p(i|CA, CB , ρAB) = Tr
[
(TGEN
i ⊗ ρAB)(CA ⊗ CB)

]
≥ 0 ∀ i, CA ≥ 0, CB ≥ 0, ρAB ≥ 0 ⇐⇒ TGEN

i ≥ 0 ∀ i. (18)

Normalization:∑
i

p(i|CA, CB , ρAB) = Tr[(
∑
i

TGEN
i ⊗ ρAB)(CA ⊗ CB)] = Tr

[
(WGEN ⊗ ρAB)(CA ⊗ CB)

]
= 1

∀ channels CA, CB and states ρAB .
(19)

Notice that condition Eq. (19) is exactly the normalization condition that, in Appendix B of Ref. [2], defines WGEN as
a bipartite process matrix. Hence, it immediately follows from the proof contained therein that WGEN must respect
Eqs. (14)-(17).

Intuitively, Eq. (14) can be understood as the constraint that guarantees the non-negativity of the elements
of the probability distributions, while Eqs. (14)-(17) guarantee the normalization of the probability distributions.
Equations (15) and (16) guarantee a local ordering of the inputs and outputs within each slot. Physically, these
equations can be understood as the constraints that forbid local time loops. The last constraint, in Eq. (17), can be
physically understood as the constraint that forbids global time loops for occurring, which would allow one slot to
exploit the channels that connect it to the second slot to feed information to its own past. A more in-depth discussion
of the physical consequences of these constraint is provided in Ref. [3].
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Figure 3. Normalization constraints for parallel, sequential, and general two-slot processes, and for their dual affine spaces, which
correspond to the normalization constraints for bipartite channels, bipartite channels with memory, and bipartite no-signalling
channel respectively. Note that the dual affine space of a set WS may be intuitively visualized as the largest set of ‘quantum
objects’ WS such that ‘connecting’ objects from WS to objects from WS always lead to the scalar number 1.

II. SEMIDEFINITE PROGRAMMING FORMULATION AND DUAL AFFINE SPACES

In this section we present a method to obtain a dual problem formulation for a class of convex optimization problems
which covers the SDP presented in our main text. This method employs ideas and techniques first presented in Ref. [4].

A subset of linear operatorsW ⊆ L(H) is said to be affine if for every set of real numbers {wi}i respecting
∑
i wi = 1,

and for every subset {Wi}i ⊆ W we have that (
∑
i wiWi) ∈ W.

Definition 5 (Dual affine space [4].). Let W ⊆ L(H) be a set of linear operators. The dual affine space W of W is
defined via

W ∈ W when Tr(W W ) = 1, ∀W ∈ W. (20)

If W ⊆ L(H) is the set of all quantum states, i.e., positive semidefinite operators W ∈ L(H) such that Tr(W ) = 1,
the only operator W such that Tr(W W ) = 1, ∀W ∈ W is the identity operator. Hence, the dual affine space of set of
quantum states has a single element which is the identity operator 1 and corresponds to the normalisation constraint
for quantum measurements.
If WPAR ⊆ L(HI ⊗HO), where HI =

⊗k
i=1 Ii and HO =

⊗k
i=1Oi stands for the set of all parallel processes, i.e.,

positive semidefinite operators that can be written as WPAR = σI ⊗ 1O, with Tr(σ) = 1, one can check that its dual
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affine space is given by a set of linear operators W
PAR

respecting TrOW
PAR

= 1I , which is the set of quantum channels
without the positivity condition.

If WSEQ ⊆ L(HI ⊗HO) stands for the set of all sequential processes, Ref. [4] shows that its dual affine space WSEQ

is given by the set of Choi operators of k-partite channels with memory1 [5] without the positivity constraint. In
particular, for the two-slot case, an operator W

SEQ ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2) belongs to the dual affine space of
the sequential processes if and only if W

SEQ
respects

O2
W

SEQ
=I2O2

W
SEQ

(21)

O1I2O2
W

SEQ
=I1O1I2O2

W
SEQ

(22)

Tr(W
SEQ

) = dI1dI2 . (23)

If WGEN ⊆ L(HI ⊗HO) stands for the set of all general processes, Ref. [4] shows that its dual affine space WGEN

is given by the set of Choi operators of k-partite no-signalling channels [6, 7] without the positivity constraint. In
particular, for the two-slot case, an operator W

GEN ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2) belongs to the dual affine space of
the general processes if and only if W

GEN
respects

O2
W

GEN
=I2O2

W
GEN

(24)

O1W
GEN

=I1O1
W

GEN
(25)

Tr(W
GEN

) = dI1dI2 . (26)

We have summarized the normalization constraints of parallel, sequential, and general processes and their respective
dual affine spaces in Fig. 3.
We now describe a method for obtaining the dual formulation of the SDPs presented in this paper based on the

concept of dual affine spaces. In the main text we have defined the primal optimization problem as

given {pi, Ci}
maximize

∑
i

piTr
(
TSi C

⊗2
i

)
subject to {TSi } ∈ T S ,

(27)

where T S is the set of all testers with strategy S. This problem can also be written as

given {pi, Ci}
max

∑
i

piTr
(
TSi C

⊗2
i

)
s.t. TSi ≥ 0∑

i

TSi ∈ WS

(28)

where WS is set of all processes with strategy S.
We start this section by considering the above optimization problem for the case where the set WS is affine, which

is the case for parallel, sequential, and general processes. For these strategies, we do not need to restrict ourselves to
the case of k = 2 copies of the input channel Ci but the method applies for any k ∈ N. Note that the normalization
constraints of separable processes do not form an affine set, for which reason the case of separable testers will be
tackled later. We also point that the for k > 2, the definition of k-slots separable processes have several nuances and
there is still no consensus on a single definition [8].

For finite dimensions, if W is an affine set we have that W =W , i.e., the dual affine space of the dual affine space of
W is simply W. Hence, for cases where W is affine, the primal SDP presented in Eq. (28) can be written as:

1 Note that a k-partite channel with memory is formally equivalent to a quantum comb with k − 1 slots [1]
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given {pi, Ci}
max

∑
i

piTr
(
TSi C

⊗k
i

)
s.t. TSi ≥ 0

WS :=
∑
i

TSi

Tr(WSW
S

) = 1, ∀WS ∈ WS ,

(29)

a formulation which has infinitely many constraints
[
Tr(WS W

S
) = 1,∀WS ∈ WS

]
. These infinitely many constraints

can be made finite by writing
[
Tr(WS W

S
j ) = 1,∀ j

]
where {WSj }j is an affine basis for WS , i.e., every WS ∈ WS

can be written as W
S

=
∑
j wjW

S
j for a set of coefficients {wj}j respecting

∑
j wj = 1. The Lagrangian of the

maximization problem can then be written as

L =
∑
i

piTr
(
C⊗ki TSi

)
+
∑
i

Tr
(
TSi Γi

)
+
∑
j

[
1− Tr

(∑
i

TSi W
S
j

)]
λj . (30)

Hence, if Γi ≥ 0 and {TSi }i is a tester, L ≥∑i piTr(C
⊗k
i TSi ). By re-arranging terms, the Lagrangian can be written

as

L =
∑
i

Tr

TSi
piC⊗ki + Γi −

∑
j

W
S
j λj

+
∑
j

λj . (31)

We then arrive at the dual problem by taking the supremum of the Lagrangian over the primal variables {TSi }i. Finally,
the solution of the dual problem will be given by the minimization over the dual variables {Γi}i and {λi}i under the
constraint that Γi ≥ 0,∀ i. The dual problem can be written as

given {pi, Ci}
minimize

∑
j

λj

s.t. Γi ≥ 0 ∀ i
piC

⊗k
i + Γi +

∑
j

λjW
S
j = 0, ∀ i

(32)

Removing the dummy variables {Γi}, we obtain

given {pi, Ci}
min

∑
j

λj

s.t. piC
⊗k
i ≤

∑
j

λjWj
S ∀ i.

(33)

The requirement of having an affine basis {WSj }j can be dropped by defining λ :=
∑
j λj and W

S
:=
∑
j
λjWj

S

λ and

noting that, by construction, for any choice of coefficient λj , W
S
is an affine combination of the affine basis elements

{WSj }i, hence W
S
necessarily belongs to WS . We can then write
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given {pi, Ci}
min λ

s.t. piC
⊗k
i ≤ λWS

W
S ∈ WS ,

(34)

where the dual affine space of the sets used in this work are explicitly presented in Fig. 3.
Due to the product of variables λ and W

S
, the constraint piC⊗ki ≤ λWS is not linear. This problem can be easily

circumvented by noting that the elements of dual affine spaces have a fixed trace Tr(W
S

). We can then “absorb” the
variable λ into W

S
by defining W ′

S
:= λWS .

For the case of separable testers, the primal problem can be formulated as

given {pi, Ci}
max

∑
i

piTr
(
T SEP
i C⊗2i

)
s.t. T SEP

i ≥ 0

W SEP :=
∑
i

T SEP
i = qW 1≺2 + (1− q)W 2≺1

W 1≺2 ∈ W1≺2, W 2≺1 ∈ W2≺1

q ∈ [0, 1],

(35)

where Wi≺j is the set of sequential processes with slot i coming before slot j. The SDP described in Eqs. (35) can also
be written as
given {pi, Ci}
max

∑
i

piTr
(
T SEP
i C⊗2i

)
s.t. T SEP

i ≥ 0∑
i

T SEP
i = W 1≺2 +W 2≺1

Tr
(
W 1≺2W

1≺2
a

)
= q, ∀a

Tr
(
W 2≺1W

2≺1
b

)
= 1− q, ∀b

W 1≺2 ≥ 0, W 2≺1 ≥ 0

(36)

where the set
{
W

i≺j
l

}
l
is an basis for the dual affine space of ordered processes.

The Lagrangian of the SDP presented in Eqs. (36) can be written as

L =
∑
i

piTr
(
C⊗2i T SEP

i

)
+
∑
i

Tr
(
T SEP
i Γi

)
+
∑
i

Tr
[
(T SEP
i −W 1≺2 −W 2≺1)H

]
(37)

+
∑
a

[
q − Tr

(
W 1≺2W

1≺2
a

)]
λ1≺2a +

∑
b

[
(1− q)− Tr

(
W 2≺1W

2≺1
b

)]
λ2≺1b (38)

+ Tr(W 1≺2σ1≺2) + Tr(W 2≺1σ2≺1). (39)

By re-arranging terms we obtain

L = Tr
[
T SEP
i (piC

⊗2
i + Γi +H)

]
(40)

+ Tr

[
W 1≺2

(
σ1≺2 −H −

∑
a

W
1≺2
a λ1≺2a

)]
+ Tr

[
W 2≺1

(
σ2≺1 −H −

∑
b

W
2≺1
b λ2≺1b

)]
(41)

+ q

(∑
a

λ1≺2a −
∑
b

λ2≺1b

)
+
∑
b

λ2≺1b . (42)
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Which leads to the dual problem

given {pi, Ci}
minimize

∑
b

λ2≺1b

s.t. Γi ≥ 0 ∀ i
σ1≺2 ≥ 0, σ2≺1 ≥ 0

q0 ≥ 0, q1≺2 ≥ 0

Γi = −piC⊗2i −H, ∀ i
σ1≺2 = H +

∑
a

W
1≺2
a λ1≺2a

σ2≺1 = H +
∑
b

W
2≺1
b λ2≺1b∑

b

λ2≺1b =
∑
a

λ1≺2a .

(43)

By removing the dummy variables we get

given {pi, Ci}
minimize

∑
b

λ2≺1b

s.t. piC
⊗2
i ≤ −H, ∀ i

−H ≤
∑
a

W
1≺2
a λ1≺2a

−H ≤
∑
b

W
2≺1
b λ2≺1b∑

b

λ2≺1b =
∑
a

λ1≺2a .

(44)

As before we define λ :=
∑
b λ

2≺1
b =

∑
a λ

1≺2
a , W

1≺2
:=
∑
a
λ1≺2
a Wa

1≺2

λ and W
2≺1

:=
∑
b
λ2≺1
b Wa

2≺1

λ , and set −H 7→ H
to obtain the simplified problem

given {pi, Ci}
minimize λ

s.t. piC
⊗2
i ≤ H, ∀ i

H ≤ λW 1≺2

H ≤ λW 2≺1

W
1≺2 ∈ W1≺2

W
2≺1 ∈ W2≺1

.

(45)

As previously explained, since the operators W
1≺2

and W
2≺1

have a fixed trace, by absorbing the coefficient λ this
problem can be straightforwardly phrased as an SDP.

III. COMPUTER-ASSISTED PROOFS

In this section we provide a general algorithm that can be used to obtain a rigorous computer-assisted proof
from numerical optimization packages which may use floating-point variables. Since floating-point variables use
approximations to store real numbers, the constraints required by the optimization problem cannot be satisfied exactly.
For instance, let Cfloat ∈ L(HI ⊗HO) be a matrix with floating-point variables which is certified by a computer to
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respect the quantum channel constraints, i.e.,

Cfloat ≥ 0 (46)

OCfloat =IO Cfloat (47)
Tr(Cfloat) = dI . (48)

Due to floating-point rounding errors, these constraints may be violated in a rigorous analysis, that is, they are satisfied
only up to a numerical precision. For this reason, numerical solutions involving floating-point variables or rounding
approximations may lead to accuracy problems [9, 10]. In order to circumvent the floating-point accuracy issue, we
provide an algorithm that, given a floating-point variable matrix which satisfies the constraints of a desired set, up to
some numerical precision, we construct another matrix which does not make use of floating-point and satisfies the
constraints of the desired set exactly. Here, by desired set we refer to six main sets consider in this work: parallel
processes, sequential processes, general processes, and their dual affine spaces.
Before proceeding, we present a useful characterization of the aforementioned sets in a unified manner in terms of

projections. More precisely, all these sets can be written as: C ∈ L(H) belongs to the desired set C ⊆ L(H) if and only
if2

C ≥ 0 (49)

C = P̃ (C) (50)
Tr(C) = γ, (51)

for a suitable linear space H, for some linear projection map P̃ : H → H, i.e., some map P̃ such that P̃ ◦ P̃ = P̃ and
P̃ (1) = 1, and for some normalization coefficient γ. Here, the set C is phrased in such a general way that it covers, for
example, the set of quantum states, channels, combs, and processes, among others.

For instance, if the desired set C is the set of quantum channels, we have that H = HI ⊗HO and C ∈ C if and only if

C ≥ 0 (52)

C = P̃ (C) = C −O C +IO C (53)
Tr(C) = γ = dI . (54)

If the desired set is the set of two-slot parallel processes WPAR, we have that H = HI1 ⊗HO1 ⊗HI2 ⊗HO2 and
W ∈ WPAR if and only if

W ≥ 0 (55)

W = P̃PAR(W ) =O1O2 W (56)

Tr(W ) = γPAR = dO1
dO2

. (57)

The projection maps P̃S for the sets of processes WS and P̃
S
for the sets of dual affine spaces WS used in this section

are presented in Table. I.

Processes Dual affine space (Channels)

PARALLEL P̃PAR(W ) =O1O2 W P̃
PAR

(W ) =W −O1O2 W +I1I2O1O2 W

SEQUENTIAL P̃ SEQ(W ) =O2 W −I2O2 W +O1I2O2 W P̃
SEQ

(W ) =W −O2 W +I2O2 W −O1I2O2 W +I1O1I2O2 W

GENERAL
P̃GEN(W ) =I1O1O2 W −I1O1 W +O1I2O2 W

−I2O2W +O1 W +O2 W −O1O2 W

P̃
GEN

(W ) =W −O1 W +I1O1 W −O2 W +I2O2 W

−O1I2O2W −I1O1O2 W +O1O2 W +I1O1I2O2 W

Table I. Projectors onto the linear space spanned by parallel, sequential, and general processes and their respective dual affine
spaces. In all these cases, H = HI1 ⊗ HO1 ⊗ HI2 ⊗ HO2 . In addition, we remark that the trace constraint of Eq. (51) for
processes is Tr(W ) = dO1dO2 and for their dual affine spaces, we have Tr(W ) = dI1dI2 .

2 Note that when dual affine spaces are considered, the positivity constraints C ≥ 0 is not required.
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We now present Algorithm 1, which takes a linear operator Cfloat respecting the conditions of a set C described by
Eqs. (49)-(51) up to numerical precision and provide an operator COK which respects the conditions of C exactly. Also,
all the steps of our algorithm can be done without approximations or the use of numerical floating-point variables.

Algorithm 1:

1. Construct the non-floating-point matrix Cfrac by truncating the matrix Cfloat
This allows us to work with fractions and to avoid numerical imprecision.

2. Define the matrix C :=
Cfrac + (Cfrac)

†

2
to obtain a self-adjoint matrix C

Ensures that we are dealing with self-adjoint matrices

3. Project C into a valid subspace and obtain P̃ (C)
Ensures that the operator is in the valid linear subspace.

4. Find a coefficient η such that D̃η

(
P̃ (C)

)
:= ηP̃ (C) + (1− η)1 is positive semidefinite

Ensures positivity without leaving the valid subspace.

5. Output the operator COK = γ
D̃η(P̃ (C))

Tr[D̃η(P̃ (C))]
which lies in C

Ensures the trace condition, preserving positivity and without leaving the valid subspace.

One way to complete step 4 is to start with η = 1 and check if the operator C is already positive semidefinite. If C
is not positive semidefinite, we can slowly decrease the value of η and check if D̃η(C) is positive definite. Checking if a
matrix is positive semidefinite can be done efficiently by implementing the Cholesky decomposition algorithm and
checking whether the algorithm leads to a valid Cholesky decomposition.

One can verify that the operator COK provided by the algorithm described above necessarily belongs to the desired
valid set S with the aid of the following theorem.

Theorem 4. Let P̃ : L(H)→ L(H) be a linear projector i.e., P̃ ◦ P̃ = P̃ , which respects P̃ (1) = 1. Let D̃η : L(H)→
L(H) be an affine map defined by D̃η(C) := ηC + (1− η)1. It holds that

D̃η

(
P̃ (C)

)
= P̃

(
D̃η

(
P̃ (C)

))
(58)

Proof.

P̃
(
D̃η

(
P̃ (C)

))
= P̃

(
ηP̃ (C) + (1− η)P̃ (1)

)
(59)

= ηP̃
(
P̃ (C)

)
+ (1− η)P̃

(
P̃ (1)

)
(60)

= ηP̃ (C) + (1− η)1 (61)

= D̃η

(
P̃ (C)

)
. (62)

Algorithm 1 allows us to obtain upper bounds for the maximal probability of discriminating an ensemble of quantum
channels. For the case in which the desired set C is the set of dual affine spaces of processes WS for some strategy S,
Cfloat is the floating-point matrix of a dual affine W

S
float, that can be obtained using numerical convex optimization

packages to solve the dual problem SDP, and map P̃ is one of the projection maps P̃
S
, then Algorithm 1 will return a

matrix W
S
OK that satisfies the constraints of the set WS exactly. A rigorous upper bound on the maximal probability

for discriminating the ensemble {pi, Ci}i is then given by the value pupper such that piC⊗ki ≤ pupperWOK for all i. Note
that if the channels Ci are also represented with floating-point variables, one can also use Algorithm 1 to obtain exact
channels Ci,OK.
In order to calculate lower bounds, we can use the primal SDP to obtain a set of {Ti,float}Ni=1 which satisfies the

conditions of some desired class of tester up to some numerical precision. To tackle this situation, we present an
algorithm to obtain a set of operators {Ti,OK}Ni=1 which satisfies the tester constraints exactly. Note that this algorithm
also works for positive-operator valued measures (POVMs), instruments, and super-instruments, among others.
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Algorithm 2:

1. Construct the non-floating-point matrix Ti,frac by truncating the matrix Ti,float
This allows us to work with fractions and to avoid numerical imprecision.

2. Define the matrices Ti :=
Ti,frac + (Ti,frac)

†

2
to obtain self-adjoint matrices Ti

Ensures that we are dealing with self-adjoint matrices.

3. Project W :=
∑N
i=1 Ti into a valid subspace and obtain P̃ (W )

Ensures the operator W is in the valid linear subspace.

4. Define the extra-outcome tester element T∅ := P̃ (W )−W
Useful step to later ensure the normalization constraints.

5. Find a coefficient η such D̃η(T∅) ≥ 0 and D̃η(Ti) ≥ 0 holds for every i
Ensures positivity of all tester elements.

6. Define Wη :=
(∑N

i=1 D̃η(Ti)
)

+ D̃η(T∅)

Defines a positive semidefinite operator such that Wη = P̃ (Wη).

7. Output the set TOK :=

γ D̃η(Ti) +
D̃η(T∅)
N

Tr(Wη)


i

which is a valid tester

Equally distributes the tester element D̃η(T∅) between elements indexed by i.

Similarly to algorithm 1, one can verify that the set TOK is a valid tester.

Theorem 5. The operator TOK defined in step 6 of Algorithm 2 is a valid tester.

Proof. By construction all tester elements

TiOK := γ
D̃η(Ti) +

D̃η(T∅)
N

Tr(Wη)
(63)

are positive semidefinite, we then need to show that WOK :=
∑
i Ti,OK respects P̃ (WOK) = WOK and Tr(WOK) = γ. For

that, note that

WOK =γ

N∑
i=1

D̃η(Ti) +
D̃η(T∅)
N

Tr(Wη)
(64)

=γ
Wη

Tr(Wη)
. (65)

We can then guarantee that Tr(WOK) = γ and

Wη =

[
N∑
i=1

ηTi + (1− η)1

]
+ ηT∅ + (1− η)1 (66)

= ηW + (1 + η)N1 + ηP̃ (W )− ηW + (1− η)1 (67)

= ηP̃ (W ) + (1− η)(N + 1)1 (68)

= ηP̃ (W ) + (1− η)(N + 1)P̃ (1) (69)

= P̃ (Wη). (70)

Algorithm 2 allows us to obtain lower bounds for the maximal probability of discriminating an ensemble of quantum
channels. A floating-point set of matrices {TSi,float}i, can be obtained via numerical convex optimization packages to
solve the primal problem SDP. Then Algorithm 2 will return a set of matrices TSOK that satisfies the constraints of the
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set T S exactly. A rigorous lower bound on the maximal probability for discriminating ensemble {pi, Ci}i is then given
by the value plower =

∑N
i=1 piTr

(
C⊗ki TSi,OK

)
.

We have implemented the algorithms presented in this section and the remaining code necessary for the calculation
of the upper- and lower bounds presented in this paper. All code has been uploaded to an online repository [11]. The
SDP optimization was implemented in MATLABTM using the package cvx [12] and tested independently with the
solvers MOSEK [13], SeDuMi [14], and SDPT3 [15]. The computer-assisted proof step used to obtain the exact upper
and lower bounds was implemented in MathematicaTM. All our code can be freely used, edited, and distributed under
the MIT license [16].

IV. SAMPLING GENERAL CHANNELS AND THE TYPICALITY OF THE HIERARCHY BETWEEN
DISCRIMINATION STRATEGIES

Our method for generating a general channel goes as follows:

1. Fix input dimension dI and output dimension dO.

2. Uniformly sample a positive semidefinite matrix A of size (dIdO)-by-(dIdO), according to the Hilbert-Schmidt
measure. This can be done, for example, using the function RandomDensityMatrix of the freely distributed
MATLAB toolbox QETLAB [17].

3. Define C to be the projection of A on the subspace of valid quantum channels, according to

C = A− OA+
1
dO

. (71)

4. Check whether C is a positive semidefinite matrix. If not, discard C and repeat the process. If yes, than C
represents the Choi operator of a valid quantum channel C̃ : L(HI)→ L(HO).

We have sampled 100, 000 pairs of general qubit-qubit channels using this method and computed, using our SDP
methods, the maximal probability of discriminating these channels in an ensemble where both channels are equally
probable, using parallel, sequential, separable, and general strategies. Our results are summarized in Table II. The first
column denotes between which strategies a gap was found and the second column denotes how many of the 100, 000
pairs of channels had such gap.

Strategy gap Number of pairs of channels
(out of 100 000)

PPAR < P SEQ 99 955

P SEQ < P SEP 99 781

P SEP < PGEN 94 026

PPAR < P SEQ < P SEP < PGEN 94 015

Table II. The first column denotes between which strategies of channel discrimination a gap in performance was found and the
second column denotes how many of the 100, 000 pairs of channels that were sampled demonstrated such a gap.

In particular, the last line of Table II, which shows that a strict hierarchy PPAR < P SEQ < P SEP < PGEN between
all four strategies was found by 94, 015 pairs of channels, implies that our method has around 94% probability of
generating a pair of qubit-qubit channels that showcases this phenomenon.

For the case of discriminating between amplitude damping channels and bit-flip channels, in order to show that the
phenomenon of the advantage between different strategies is not unique to a specific choice of parameters, we plot
on Fig. 4 the probability of successful discrimination between an amplitude damping channel with decay parameter
γ ∈ [0, 1] and a bit-flip channel with fixed flipping parameter η = 0.87. A clear gap between all four strategies can
be clearly seen on the zoomed picture-in-picture, which plots only γ ∈ [0.5, 0.7]. Similar plots can be obtained for
different values of η.

It is also true that a strict hierarchy between strategies of channel discrimination can be found when discriminating
among two amplitude damping channels, in an equiprobable ensemble, with different decay parameters. Using our
methods, we have calculated the probability of success for all four strategies, and would like to point out one interesting
case of discrimination between one amplitude damping channel with γ1 = 0.37 and another with γ2 = 0.87, which gives
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Figure 4. Probability of successfully discriminating an amplitude damping channel and a bit-flip channel, in an equiprobable
ensemble, using k = 2 copies. The value of the decay parameter of the amplitude damping channel varies with the interval
γ ∈ [0, 1], while the flipping parameter of the bit-flip channel is fixed at η = 0.87. The four curves represent parallel, sequential,
separable, and general strategies of channel discrimination. A clear gap between all four strategies is clearly visible in the
picture-in-picture plot, with γ ∈ [0.5, 0.7].
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(72)

Here, we confirm that there exists advantage in the discrimination of amplitude damping channels using sequential
strategies over parallel strategies. Furthermore, we show that the case of discrimination among two amplitude damping
channels is also an example of a complete hierarchy among all four strategies.
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