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We address the problem of characterizing the steerability of quantum states under restrictive measurement
scenarios, i.e., the problem of determining whether a quantum state can demonstrate steering when subjected
to N measurements of k outcomes. We consider the cases of either general positive operator-valued measures
(POVMs) or specific kinds of measurements (e.g., projective or symmetric). We propose general methods to
calculate lower and upper bounds for the white-noise robustness of a d-dimensional quantum state under different
measurement scenarios that are also applicable to the study of the noise robustness of the incompatibility of sets of
unknown qudit measurements. We show that some mutually unbiased bases, symmetric informationally complete
measurements, and other symmetric choices of measurements are not optimal for steering the isotropic states and
provide candidates for the most incompatible sets of measurements in each case. Finally, we provide numerical
evidence that nonprojective POVMs do not improve over projective ones for this task.
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I. INTRODUCTION

Correlations arising from local measurements on entangled
states can lead to statistics that cannot be explained by any local
causal theory [1]. This nonlocal aspect of quantum mechanics
can be analyzed from two nonequivalent perspectives, Bell
nonlocality [2] and Einstein-Podolsky-Rosen (EPR) steering
[3,4]. On a bipartite scenario, while Bell nonlocality deals
with a full device-independent approach where a correlation
experiment is analyzed only considering the probability
relations between inputs and outcomes, EPR steering plays an
intermediate role between entanglement and Bell nonlocality
by doing a device-independent analysis only on one side of the
experiment while treating the other side in a device-dependent
manner (e.g., performing full state tomography).

Although the first notions of EPR steering date back to
1935 [3], its modern mathematical formulation only appeared
in 2007 [4], and many of its fundamental properties [5–9]
and applications to semi-device-independent protocols
[10–15] are only being understood recently. In order to get
a better understanding of EPR steering and make use of its
practical applications, an important task is to determine which
states can lead to these nonlocal correlations.

EPR steering can be certified with the use of steering
witnesses [16], but finding suitable inequalities and choosing
appropriate measurements to reveal this sort of nonlocality
of a given quantum state remains a nontrivial task. On the
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other hand, proving that a quantum state cannot lead to EPR
steering can be done by constructing a local hidden state (LHS)
model that is able to simulate the statistics of the quantum state
[4,17–19]. Recently, a general algorithm to construct LHS
models for quantum states was presented [20,21], regarding
scenarios where all (i.e., infinitely many) measurements are
considered. However, if one is interested in using steering
as a resource for information theoretical tasks, then it is
important to characterize the steerability of quantum states
in more practical scenarios. For instance, when the number of
measurements and outcomes is limited (finite), or yet, when
even the structure of the measurements is restricted.

Since the ability to demonstrate steering is intimately
related to the ability to perform incompatible measurements
[22,23], by addressing the problem of characterizing the
steerability of quantum states under restrictive scenarios one
can simultaneously address the problem of characterizing the
ability to jointly perform a set of unknown measurements sub-
jected to the same restrictions [24,25]. Although the question
of whether a set of fixed (known) measurements is jointly
measurable can be decided by semidefinite programming
(SDP) [26]—which is also the case for deciding whether a
given quantum state is steerable when subjected to a set of fixed
(known) measurements [27,28]—if the complete description
of the measurements is not known, there do not exist general
methods to characterize steerability or joint measurability.

In this paper we consider steering and joint measurability in
scenarios where the number of measurements and outcomes is
finite. By systematically applying adaptations of the paramet-
ric search, the seesaw algorithm [29], and the outer polytope
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approximation [30], we derive upper and lower bounds to
the maximal amount of white noise that a quantum state can
endure before it is no longer able to demonstrate steering
when subjected to a set of N general local measurements with
k outcomes. Using the same methods, we calculate upper and
lower bounds for the minimum amount of white noise that
must be applied to any set of general N qudit k-outcome
measurements so that it is assured that they can be jointly per-
formed. By imposing further restrictions on the measurement
scenarios, we also study prominent classes of measurements
that are known to be useful in many quantum information tasks,
such as projective measurements, symmetric informationally
complete (SIC) measurements [31], and measurements from
mutually unbiased bases (MUBs) [32].

We present our calculations for qubit states in scenarios
ranging from 2 to 18 projective, planar projective, symmetric,
and general measurements and provide strong evidence that,
in the considered scenarios, general positive operator-valued
measures (POVMs) do not outperform projective measure-
ments for exhibiting steering. We also show that our optimal
sets of qubit measurements are not distributed in the Bloch
sphere according to any of the most intuitive patterns, such as
the vertices of Platonic solids, the distribution of electrons on
a sphere in the Thomson problem [33], and the Fibonacci
spiral [34]. We present an alternative candidate for this
distribution for the cases of N ∈ {2, . . . ,6} measurements,
supported by our numerical findings. For higher dimensions,
we present evidence that increasing the number of outcomes
beyond the value of the local dimension of the state does not
improve white-noise robustness, again implying that projective
measurements are optimal for steering. We also prove that, in
many cases, incomplete sets of MUB measurements are not
optimal, while providing numerical evidence that complete
sets may be optimal for steering the isotropic states.

II. PRELIMINARIES

A. Einstein-Podolsky-Rosen steering

Bipartite steerability is usually defined in terms of an
assemblage. Let ρAB be a bipartite quantum state shared by
Alice and Bob and let {Ma|x} be a set of measurements on
Alice’s subsystems. Then an assemblage {σa|x} is defined as

σa|x = TrA(Ma|x ⊗ 1 ρAB) (1)

for all a,x, where x ∈ {1, . . . ,N} and a ∈ {1, . . . ,k} label
Alice’s measurements and outcomes, respectively, and TrA
denotes the partial trace over the Hilbert space of Alice. An
assemblage does not demonstrate steering when it admits an
LHS model, namely, when there exists � such that

σa|x =
∑

λ

π (λ)pA(a|x,λ)ρλ (2)

for all a,x, where λ ∈ � are the possible values that can be
assumed by a local hidden variable with probability π (λ),
pA(a|x,λ) is the probability of Alice’s obtaining outcome a

conditioned on her choice of measurement x and λ, and, finally,
ρλ is a local hidden state held by Bob that is conditioned
by the value λ and independent of Alice’s measurements
and outcomes. An assemblage demonstrates steering when
it does not admit such decomposition [4] or, equivalently,

when it violates a steering inequality [16]. A quantum state
ρAB is unsteerable if all assemblages that can be generated by
performing local measurements on it admit an LHS model. On
the other hand, a quantum state is steerable if there exists a set
of measurements that, when locally performed on it, generates
an assemblage that violates a steering inequality.

B. Measurement incompatibility

A set of measurements {Ma|x}, where x ∈ {1, . . . ,N} labels
the measurements in the set and a ∈ {1, . . . ,k} labels the
outcomes of each measurement, is jointly measurable, or
compatible, if there exists a joint measurement, {Mλ}, such that

Ma|x =
∑

λ

π (λ)p(a|x,λ)Mλ (3)

for all a, x, where π (λ) and p(a|x,λ) are elements of probabil-
ity distributions. Hence, all POVM elements Ma|x can be re-
covered by coarse-graining over the joint measurement {Mλ}.

Although for projective measurements joint measurability
is equivalent to commutation, general POVMs from a jointly
measurable set may not commute [35,36]. In this sense, joint
measurability is a more general definition of incompatibility.

C. Main problem

Consider the depolarizing map �η acting on the Hermitian
operator A of a d-dimensional Hilbert space H, defined as

A �→ �η(A) = ηA + (1 − η)Tr(A)
1

d
. (4)

The depolarizing map can be physically interpreted as the ef-
fect of the presence of white noise in the implementation of A.
When applied to elements of an assemblage it defines a steering
quantifier, the white-noise robustness of an assemblage,

η({σa|x}) = max{η | {�η(σa|x)}a,x ∈ LHS}, (5)

where LHS is the set of assemblages that admit an LHS model
and, hence, do not demonstrate steering. Therefore, η({σa|x})
is the exact value of η, called the critical visibility of the
assemblage, above which {σa|x} no longer admits an LHS
model. Since {�1(σa|x)} is the assemblage itself and {�0(σa|x)}
is such that each of its elements corresponds to a multiple of
the identity (and therefore it always admits an LHS model),
by convexity it is guaranteed that the critical visibility of the
assemblage η({σa|x}) lies in [0,1].

Given an assemblage, its critical visibility can be calculated
by an SDP (see Sec. III A and see Ref. [29] for a review of
SDP characterization of steering). Similarly, by applying the
depolarizing map to a set of measurements {Ma|x} instead of
an assemblage, one can define the critical visibility for a set
of measurements to be incompatible, i.e., a value of η above
which a set of measurements can no longer be described by a
joint POVM.

Here we are interested in calculating the minimum of
the quantity η({σa|x}) among all the possible choices of N

measurements with k outputs for a fixed quantum state ρAB .
Formally this quantity can be defined as

η∗(ρAB,N,k) = min
{Ma|x }

{η({σa|x})|σa|x = TrA(Ma|x ⊗ 1 ρAB)},

(6)
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where the minimization runs over sets {Ma|x} of N k-outcome
measurements. The value η∗(ρAB,N,k) is the critical visibility
of the quantum state ρAB when subjected to N measurements
of k outcomes. Note that for η � η∗(ρAB,N,k), the state ρAB

is unsteerable for all sets of N k-outcome measurements, and
for η > η∗(ρAB,N,k), ρAB is steerable for at least one set of
N k-outcome measurements.

Unlike the critical visibility of an assemblage η({σa|x}),
the critical visibility of a quantum state η∗(ρAB,N,k) is the
solution of a min-max optimization problem and cannot be
calculated by an SDP. In this work we provide methods to
obtain upper and lower bounds for η∗(ρAB,N,k).

D. Connection to the most incompatible measurements

In Refs. [24,25] the authors have proved that a set of mea-
surements {Ma|x} is not jointly measurable if and only if Alice
can steer Bob by performing the same measurements on her
share of a maximally entangled state |φ+

d 〉 := 1√
d

∑d−1
i=0 |ii〉,

where d stands for the local dimension of the quantum system.
Hence, the critical visibility η∗(|φ+

d 〉,N,k) coincides with the
critical visibility for which any set of N measurements with k

outcomes is jointly measurable.
Following from the definition of the depolarizing map

[Eq. (4)] and the maximally entangled states, it is easy to
show that the noisy assemblage {�η(σa|x)} resulting from
applying the depolarizing map to an assemblage generated
by performing local measurements {Ma|x} on a maximally
entangled state |φ+

d 〉 is equivalent to the assemblage resulting
from locally performing measurements {Ma|x} on the noisy
state (1 ⊗ �η)(|φ+

d 〉〈φ+
d |). Namely,

�η(σa|x) = TrA(Ma|x ⊗ 1d (1d ⊗ �η)(|φ+
d 〉〈φ+

d |)), (7)

where

(1d ⊗ �η)(|φ+
d 〉〈φ+

d |) = η|φ+
d 〉〈φ+

d | + (1 − η)
1d2

d2
(8)

is the isotropic state of local dimension d. Therefore, the crit-
ical visibility of the maximally entangled states η∗(|φ+

d 〉,N,k)
is equal to the critical value of the parameter η of the isotropic
states for which they can demonstrate steering, which, in turn,
is equal to the critical visibility for any set of N unknown
qudit measurements with k outcomes to be compatible. For
this reason we speak equivalently of the critical visibility
of the maximally entangled states, isotropic states, and joint
measurability. To simplify notation, we define this quantity as
η∗(d,N,k) := η∗(|φ+

d 〉,N,k).
For general states, one can lower-bound the noise robust-

ness of joint measurability by that of steerability [37].

III. METHODS

In the following we describe three methods we used to
characterize the steerability of quantum states subjected to
restricted measurement scenarios. The first method provides
upper bounds for η∗(ρAB,N,k) in scenarios where not only the
number of measurements and outcomes is fixed but possibly
also the structure of the POVMs. The second one provides
upper bounds for η∗(ρAB,N,k) when only the number of
measurements and outcomes is fixed (considering general

measurements). Both methods provide candidates for the opti-
mal set of measurements in a given scenario. The third method
provides lower bounds for η∗(ρAB,N,k) and constructs LHS
models for quantum states when the number of measurements
and outcomes is fixed.

All code used in this work is available in Ref. [38].

A. Upper bounds for η∗(ρAB,N,k)

1. Search algorithm

For a given quantum state ρAB and a fixed set of
measurements {Ma|x}, the critical visibility η({σa|x}) of the
assemblage {σa|x}, which is generated by locally performing
these measurements on the given state, can be calculated by
the SDP

given ρAB,{Ma|x},
max η,

s.t. σa|x = TrA(Ma|x ⊗ 1 ρAB), ∀ a,x,

ησa|x + (1 − η)Tr(σa|x)
1

d
=

∑

λ

D(a|x,λ)σλ, ∀ a,x,

σλ � 0, ∀ λ, (9)

where D(a|x,λ) are elements of deterministic probability
distributions and λ ∈ {1, . . . ,kN }. For a fixed quantum state
ρAB , different sets of measurements can be tested, each set
requiring one SDP to calculate the value of η({σa|x}). The first
method we propose is to parametrize the sets of measurements
allowed in a given scenario and, by varying these parameters,
explore the solution of multiple SDPs to calculate a bound for
η∗(ρAB,N,k).

Two important facts can be explored to facilitate this task.
The first one is that it is only necessary to optimize over
extremal measurements. This is due to the fact that the critical
value of η depends linearly on the choice of measurements,
hence, by convexity, the optimal value will be obtained over
extremal measurements. The second fact is that for a system
of dimension d, extremal measurements have at most d2

outcomes [39].
Aside from the restriction on the number of measurements

and outcomes, it is possible to impose restrictions on the
parametrization that specify a certain kind of measurement that
can be more relevant to the problem one wishes to approach.
For instance, it is possible to perform an optimization over only
projective measurements or other POVMs with some specific
structure (e.g., SIC-POVMs).

The optimization tools chosen for this work are the MATLAB

functions fminsearch [40], an unconstrained nonlinear mul-
tivariable optimization tool, and fmincon [40], a constrained
nonlinear multivariable optimization tool. These methods are
heuristic and, as such, are not guaranteed to find a global
minimum. In order to improve the bound they provide for
η∗(ρAB,N,k), multiple initial points can be tested. They also
provide a candidate for the optimal set of N k-outcome
measurements in the given scenario, the one that generates
the most robust assemblage when locally performed on ρAB .

2. Seesaw algorithm

The seesaw algorithm is an iterative method for solv-
ing some nonlinear optimization problems that has found
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many applications in quantum information theory. In Refs.
[29,41,42] seesaw algorithms are used as methods of mea-
surement optimization that are here adapted to approach our
problem.

Our seesaw iterates two SDPs. The first one is the dual
formulation of SDP (9):

given ρAB,{Ma|x},
min
{Fa|x }

1 −
∑

a,x

Tr(Fa|xσa|x),

s.t. σa|x = TrA(Ma|x ⊗ 1 ρAB), ∀ a,x,

1 −
∑

a,x

Tr(Fa|xσa|x) + 1

d

∑

a,x

Tr(Fa|x)Tr(σa|x) = 0,

∑

a,x

Dλ(a|x)Fa|x � 0, ∀ λ. (10a)

This SDP returns the coefficients {Fa|x} of a steering inequality
of the form

∑
a,x Tr(Fa|xσa|x) � 0. The value obtained by the

assemblage {σa|x}, which is generated by the input state ρAB

and set of measurements {Ma|x}, for the left-hand side of this
inequality is precisely 1 − η({σa|x}). This is due to the fact
that primal and dual problems satisfy strong duality. As part
of the seesaw, this SDP starts by taking a randomly chosen set
of N k-outcome measurements and the quantum state whose
steerability one wishes to characterize.

The second SDP of the seesaw is
given ρAB,{Fa|x},
max
{Ma|x }

∑

a,x

Tr(Fa|xσa|x),

s.t. σa|x = TrA(Ma|x ⊗ 1 ρAB), ∀ a,x,

Ma|x � 0, ∀ a,x,∑

a

Ma|x = 1, ∀ x. (10b)

This SDP takes the coefficients {Fa|x} of the steering inequality
that were outputted by the first SDP, (10a), as input and, for
the same quantum state ρAB , finds the set of POVMs {Ma|x}
that generates the assemblage that maximally violates this
inequality. The measurement set that is the output of this SDP,
(10b), will be the input of the first SDP, (10a), in the next round
of the iteration. When performed locally on the fixed quantum
state, it will necessarily generate an assemblage that has the
same or a lower critical visibility than the measurement set
from the previous round. When some convergence condition
is satisfied (e.g., the diference between the solutions of SDP
(10a) in two subsequent rounds is less than a certain value), the
iteration is halted. The final value for η found by the seesaw is
an upper bound for η∗(ρAB,N,k) of the input state and the set
of measurements found by the seesaw is a candidate for the
optimal set of N general measurements with k outcomes for
steering the state ρAB .

This is also a heuristic method, hence, by itself, it does
not prove that the obtained bound is tight. However, it is
possible to improve the result by testing multiple initial points.
Contrary to the search algorithm, which allows for constraints
on the structure of the POVMs, this method optimizes over
all possible sets of N k-outcome general POVMs. Our
calculations have shown that even though the seesaw algorithm
does not have this extra feature, when the interest is in
optimizing over general POVMs, it is more effective in doing

so than the search algorithm (in the sense that the seesaw
demands computational times that are orders of magnitude
smaller than the search algorithm for the same number of
measurements and outcomes). In all cases tested, for the same
state and scenario the solutions of both methods coincide.

B. Lower bounds for η∗(ρAB,N,k)

Outer polytope approximation

Consider the set A of all assemblages that can be generated
by performing N local measurements of k outcomes on a fixed
quantum state ρAB . This set is convex but not a polytope. In
order to guarantee that all assemblages in A admit an LHS
model it is sufficient to guarantee that this holds for all of the
extremal assemblages of the set. However, since there is an
infinite number of extremal assemblages in this set (each one
corresponding to an extremal set of N k-outcome measure-
ments) it is not viable to test each and every one of them.

The method we propose to overcome this problem is
based on the techniques presented in Ref. [30], where the
authors approximate the set of quantum measurements by outer
polytopes. The idea is to construct an external polytope 	 that
contains A, such that every assemblage in A can be expressed
as a convex combination of the finitely many extremal points
of 	. We call the extremal points of 	 quasiassemblages (they
are nonpositive operators that sum to a reduced state ρB).
The way we generate these quasiassemblages is by applying
well-chosen quasi-POVMs [30] (nonpositive operators that
sum to the identity) to a fixed quantum state. One can calculate
the white-noise robustness of each quasiassemblage in 	 using
SDP (9), and the lowest value among them will be a lower
bound for η∗(ρAB,N,k). The SDP will return LHS models
for the quasiassemblages which can be used to construct, by
simple convex combination, LHS models for all assemblages
in the depolarized set.

We now detail the construction of these polytopes for
the case where the dimension of Alice’s system is d = 2.
A generalization to higher dimensions follows analogously,
and we refer to Ref. [30] for more details. In this case, any
measurement operator M can be written as M = α1 + �v · �σ ,
where �v is a three-dimensional real vector and �σ is the vector
of Pauli matrices. By checking the eigenvalues we see that
M � 0 if and only if ‖�v‖ � α, where ‖ · ‖ is the Euclidian
norm, which is equivalent to saying that �v is contained in a
real sphere of radius α � 0. This allows one to represent each
measurement operator as a vector in a rescaled Bloch sphere
of radius α. In order to approximate the set of all POVMs in
d = 2 it is sufficient to approximate the Bloch sphere by an
outer polyhedron, which is a simple task in R3 (see Fig. 1).

Since the extremal points of the polytope are outside
the Bloch sphere, i.e., ‖�v‖ > α, they violate the positivity
condition for operators in a two-dimensional Hilbert space.
Hence, the extremal points of the polytope do not correspond
to positive semidefinite operators. They are represented by
a vector v such that v · wi � α, for some finite set {wi} of
vectors defining facets of a polytope that contains the sphere
of radius α. Accordingly, a quasi-POVM is a set of these
nonpositive operators that sum up to the identity. All sets of
N quasi-POVMs that can be constructed from the extremal
points of the polytope that approximates the Bloch sphere are
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FIG. 1. Example of an approximation of the Bloch sphere by an
outer polytope.

then locally performed on ρAB to obtain the quasiassemblages
that define the polytope 	 that approximates the set A.

The lower bound provided by this method can be improved
by increasing the number of tangency points of the outer
polytope on the sphere. Contrary to the search and seesaw
algorithms, the outer polytope method converges to the exact
value of η∗(ρAB,N,k) with probability p = 1 in the limit of
an infinite number of generic extremal points. Hence, the
bound can be improved as much as necessary, up to available
computational resources.

C. Brief discussion of the methods

1. Different quantifiers of steering and joint measurability

We start our discussion by remarking that although the
presented methods were based on the white-noise robustness
of steering, they can be easily adapted to estimate other
quantifiers of steering that can be calculated by an SDP for
fixed state and measurements. Some examples are the steering
weight [28] and the generalized robustness of steering [43].
Also, given the strong connection between joint measurability
and steering discussed in Sec. II D, analogues of all these
steering quantifiers also exist for joint measurability [37] and
our methods can be used to obtain upper and lower bounds for
these quantities as well.

2. Convergence

As discussed in Sec. III B, the method to calculate lower
bounds for η∗(ρAB,N,k) is constituted by a sequence of
algorithms that converges to the precise value in the limit
of infinite extremal points. The cumbersome feature is that
the precise value cannot be attained within a finite number
of steps. On the other hand, the upper-bound methods consist
of heuristic optimization algorithms that may return the exact
critical visibility, but there is no guarantee of that. We note
that although we did not present a sequence of converging
algorithms for calculating upper bounds for η∗(ρAB,N,k),
one can be constructed by simply testing every possible
combination of measurements, possibly with the assistance
of polytopes that approximate the set of assemblages from
the inside. Since the set of measurements is convex, it can
be approximated by a converging sequence of polytopes,
guaranteeing the existence of this sequence of algorithms [44].
The drawback of this “brute force” converging method is that it
may take an impractical amount of time to find useful bounds,

which is not the case for the heuristic upper-bounds methods
discussed in Sec. III A.

3. Lower bounds for a finite vs an infinite
number of measurements

In Refs. [20,21], the authors have presented a method for
constructing LHS models for quantum states when all possible
measurements (hence an infinite number) are considered. Here,
we address a similar question, but in cases where a finite
number of measurements is considered. Perhaps surprisingly,
our algorithm suggests that constructing local hidden state
models for only a finite number of measurements is consid-
erably harder than for an infinite number of measurements.
For instance, calculating (good) lower bounds for the critical
visibility of the two-qubit Werner states subjected to five
dichotomic measurements was a very computationally chal-
lenging task. Nonetheless, when all possible measurements
are considered, the numerical methods of Refs. [20,21] can
find good lower bounds in a reasonably small time.

4. Numerical stability of the seesaw method

When implementing the seesaw method with the visibility
parametrization described in Sec. II C, we faced some numer-
ical instability. To overcome this problem, the parametrization

σa|x + tTr(σa|x) 1
d

1 + t
∈ LHS (11)

was used instead. The SDPs were then rewritten as a
minimization over the parameter t with the correspondence
η∗ = 1

1+t∗ , where a superscript asterisk denotes the optimal
value. Although the interpretation of the visibility parametriza-
tion is more straightforward due to its relation with the
depolarazing map, the formulation of the problem with the
t parameter is equivalent. The numerical stability was also
improved by avoiding redundant constraints on normalization
and nonsignaling conditions. We also used the seesaw method
to calculate upper bounds for the generalized robustness of
steering [43] of a quantum state. The seesaw for this quantifier
was shown to be more numerically stable than the one for
white-noise robustness. As a consequence, the generalized
robustness seesaw was used to approach the scenarios with
the largest number of parameters in this work.

IV. RESULTS

We now present the results we obtained by applying the
machinery developed in the last section to some specific
quantum states. In order to tackle the steering and the joint
measurability problem simultaneously, we concentrate on
isotropic states in our examples. Also, two-qubit isotropic
states can be mapped into two-qubit Werner states [17] via
a local unitary transformation, which always preserves the
steerability [5]. For this reason, we present our two-qubit
results in terms of Werner states, which in this case are
given by

(1 ⊗ �η)(|ψ−〉〈ψ−|) = η|ψ−〉〈ψ−| + (1 − η)14 , (12)
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FIG. 2. Plot of the upper bounds of the critical visibility of
two-qubit Werner states subjected to N regular tetrahedron and
regular trine measurements and the upper and lower bounds for N

planar projective and general projective measurements. Dotted black
lines correspond to the values η = 1

2 , below which the Werner states
are unsteerable for all projective measurements [17], and η = 2

π
,

below which the Werner states are unsteerable for all planar projective
measurements [45,46].

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the singlet state. To simplify

notation we refer to the critical visibility of these two-qubit
states as simply η∗(N,k) := η∗(2,N,k).

A. Planar qubit projective measurements

We start with a simple family of qubit measurements, the
planar projective measurements. These are qubit projective
measurements whose Bloch vectors are confined to the same
plane. The reasons for studying this kind of measurement
include its simple experimental implementation [45] and
the low computational cost required to optimize over these
measurements, compared to more general ones.

Initially, we use the search algorithm with the constraint
that all measurement vectors are coplanar to calculate upper
bounds for the critical visibility η∗(N,2) of two-qubit Werner
states. Calculations were performed for sets of N ∈ {2, . . . ,15}
planar projective measurements. The results are presented in
Fig. 2 and Table I.

For all trials performed with multiple initial points, the
result for both the objective function—the parameter η—and
the optimization variables—the angles between the Bloch
vectors of the measurements—were the same for all values
of N tested. In all cases, the optimal set of measurements
found by the algorithm is the one in which the Bloch vectors
of all measurements are equally spaced on a plane, i.e., each
Bloch vector is separated from its next neighbors by an angle
of π

N
, as represented for the cases of N ∈ {2, . . . ,5} in Fig. 3.

Next, we calculated lower bounds for η∗(N,2) in the
restricted scenario of planar projective measurements using the
method of outer polytope approximation. Results are reported
for the cases of N ∈ {2, . . . ,5} planar projective measurements
also in Fig. 2 and Table I. The lower bound for η∗(N,2) found
by the outer polytope approximation method matches the upper
bound found by the search algorithm up to three or four decimal
places for all cases tested. We consider this to be enough

TABLE I. Summary of numerical results for the critical visibility
of two-qubit Werner states subjected to N projective measurements.

Projective qubit measurements

Gen. Opt. Planar Opt. Fixed sets

N Upper Lower Upper Lower Thomson Fibonnaci

2 0.7071 0.7071 0.7071 0.7071 0.7071 0.7102
3 0.5774 0.5755 0.6667 0.6667 0.5774 0.6981
4 0.5547 0.5437 0.6533 0.6532 0.5774 0.6114
5 0.5422 0.5283 0.6472 0.6470 0.5513 0.5653
6 0.5270 0.6440 0.5393 0.5561
7 0.5234 0.6420 0.5234 0.5533
8 0.5202 0.6407 0.5250 0.5508
9 0.5149 0.6399 0.5209 0.5359
10 0.5144 0.6392 0.5191 0.5302
11 0.5132 0.6388 0.5148 0.5274
12 0.5117 0.6384 0.5152 0.5261
13 0.5105 0.6382 0.5126 0.5220
14 0.6380 0.5114 0.5180
15 0.6378 0.5107 0.5158
16 0.5106 0.5158
17 0.5086 0.5150
18 0.5079 0.5136

evidence to claim that for the cases of N ∈ {2, . . . ,5} planar
projective measurements, the optimal set of measurements for
steering two-qubit Werner states is the set of equally spaced
measurements. This is equivalent to stating that the most
incompatible set of N ∈ {2, . . . ,5} planar projective qubit
measurements is the set of equally spaced measurements.
We also conjecture this result to be valid for any number
of planar projective measurements. The values we calculated
match the analytical results for the incompatibility of equally
spaced planar projective qubit measurements presented in
Refs. [45,46].

B. General qubit projective measurements

Since the optimal sets of measurements for our problem in
the case of planar projective measurements appear to be the sets
of equally spaced measurements on a plane, we hypothesize
that the optimal sets of general qubit projective measurements
correspond to some notion of equally spaced points on a
sphere. Unfortunately, contrarily to the equivalent problem
on a circumference, the problem of equally distributing points

N = 2 N = 3 N = 4 N = 5

FIG. 3. Optimal set of N ∈ {2, . . . ,5} planar qubit projective
measurements for steering the two-qubit Werner states. Due to the
connection between steering and joint measurability, these are also
the most incompatible sets of N ∈ {2, . . . ,5} planar qubit projective
measurements.
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on a sphere is not trivial and many different sets of points can
be defined using different notions of distance. This problem is
particularly difficult in the regime of few points. For this work
we chose the equally spaced notion of the Thomson problem
[33] and the Fibonacci problem [34]. The former, for the
particular cases of N ∈ {2,3,4,6,10} projective measurements
corresponding to 4, 6, 8, 12, and 20 vertices, is equivalent
to the Platonic solids. The results for the critical visibility of
two-qubit Werner states subjected to sets of N ∈ {2, . . . ,18}
local measurements constructed from these two notions of
equal spacing are listed in Table I.

To test whether these sets of measurements are indeed
optimal, we once again use the search algorithm, now with the
only restriction that the measurement operators correspond
to projectors. We report upper bounds for the value of
η∗(N,2) in scenarios of N ∈ {2, . . . ,13} general projective
measurements. In all cases the search algorithm was able to
improve the bound provided by both the Thomson and the
Fibonacci measurements (see Table I), proving that they are
actually not optimal. The best upper bounds are plotted in
Fig. 2 and the Bloch vectors of the measurement elements that
form the best candidate for the optimal set of measurements
in the cases of N ∈ {2, . . . ,6} projective measurements are
plotted in Fig. 4.

For these measurements, the vectors are distributed in a
particular way: for two and three measurements, we have
sets of orthogonal vectors; for four measurements we have
three coplanar and equally distributed vectors and one vector
orthogonal to the other three; for five and six measurements,
the structure of three coplanar equally spaced vectors is
maintained and the other vectors are agglomerated around
the poles of the sphere with the same z projection. For cases
of seven or more measurements, this apparent symmetry is no
longer necessarily respected.

Using the outer polytope approximation we calculated
the lower bounds for the cases of N ∈ {2, . . . ,5} projective
measurements that are reported in Fig. 2 and Table I. In
this case the gap between upper and lower bounds for the

N = 2 N = 3

N = 4 N = 5 N = 6

FIG. 4. Candidates for the optimal set of N ∈ {2, . . . ,6} qubit
measurements for steering two-qubit Werner states. These sets are
also candidates for the most incompatible set of N ∈ {2, . . . ,6} qubit
measurements.

general projective case is larger than in the planar projective
case. This is due to the increase in the number of parameters
in the former case compared to the latter. However, due to
the convergence properties of our outer polytope method, as
discussed in Secs. III B and III C, these lower bounds can be
improved beyond the scope of this work.

C. General POVM relevance for qubits

An old standing question in nonlocality is to understand
when general POVMs are useful to reveal this property in
a given quantum state [17,47–49]. It is well known that
constructing local hidden variable and LHS models for general
POVMs is considerably harder than constructing these models
for projective measurements [17,47–49]. Moreover, it is not
known whether nonprojective measurements are more useful
than projective ones to demonstrate EPR steering or Bell non-
locality. For some particular fixed (nontight) Bell inequalities,
it is known that general POVMs can lead to a larger Bell
violation than projective measurements [50], but the existence
of a quantum state that has a local hidden variable/LHS model
for projective measurements but displays Bell nonlocality/EPR
steering when general POVMs are considered is still an open
question.

We have applied our seesaw method to two-qubit Werner
states where the noncharacterized party has access to N ∈
{2, . . . ,7} general POVMs with two, three, and four outcomes.
We recall that for the case of two outputs, nonprojective
POVMs can never be useful for nonlocality, since they can al-
ways be written as convex combinations of projective measure-
ments [39]. Also, qubit POVMs with more than four outcomes
are never extremal [39], hence these measurements could
never lead to better bounds for the critical visibility. For this
reason we now define the quantity η∗(N ) := η∗(N,d2 = 4),
the critical visibility of the two-qubit Werner states when
subjected to N POVMs of an arbitrary number of outcomes.

In addition to using the seesaw method to explore general
POVMs, we have applied the search algorithm to the specific
case where Alice is required to perform symmetric three- and
four-outcome POVMs on her side of a maximally entangled
two-qubit state. In the four-outcome case, we have fixed all
measurements to be SIC-POVMs [31], which are extremal
measurements whose Bloch vectors correspond to the vertices
of a regular tetrahedron. In the three-outcome case, the chosen
POVM was the symmetric extremal measurement whose
Bloch vectors correspond to the “Mercedes-Benz star,” also
called the regular trine [51] (see Fig. 5). These particular
symmetric nonprojective measurements are known to be useful
in tasks such as tomography [52,53] and cryptography [54],
hence they are interesting examples of extremal nonprojective
qubit POVMs [39].

Our results for symmetric qubit POVMs are plotted in
Fig. 2 and listed in Table II for the cases of N ∈ {2, . . . ,8},
including the results for projective measurements, which are
symmetric two-outcome POVMs, for the sake of comparison.
In the case of N = 2, the optimal set of regular trine and
regular tetrahedron POVMs is plotted in Fig. 5. It is easy to see
that under none of the analyzed scenarios were the symmetric
nonprojective POVMs able to show more steering than the
projective measurements. In fact, the bounds for symmetric
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TABLE II. Summary of numerical results for upper bounds of the
critical visibility of two-qubit Werner states subjected to N extremal
symmetric POVMs.

Symmetric qubit POVMs

Projective Trine Tetrahedron
N (k = 2) (k = 3) (k = 4)

2 0.7071 0.7739 0.8165
3 0.5774 0.7202 0.7829
4 0.5547 0.6917 0.7716
5 0.5422 0.6791 0.7653
6 0.5270 0.6690 0.7617
7 0.5234 0.6656 0.7605
8 0.5202 0.6647 –

three- and four-outcome qubit POVMs are considerably worse
than for projective qubit measurements.

As for the optimization over general three- and four-
outcome qubit POVMs, we could not find any set of N

general POVMs that are able to overperform projective ones.
For N = 2 and 3 and k = 4, the seesaw algorithm ran 105

times, each time with a different initial point; for N = 4 and
k = 3, the seesaw ran 4×104 times, and for k = 4, 3×104

times; for N = 5, 6, and 7, and k = 3, it ran 2×104, 2×103,
and 200 times, respectively. Without exception, our algorithm
recovered the bound for η∗(N ) obtained by the optimization
over projective measurements using general POVMs, usually
by nulling two measurement outcomes and “simulating” a pro-
jective measurement. However, it was never able to surpass it.

Strictly speaking, the results presented in this section
are only upper bounds for the critical visibility η∗(N ).
Nevertheless, given the small number of parameters in the
two-qubit scenario and the number of times we have ran
our heuristic method, we believe that these results are strong
evidence that general POVMs are not useful to reveal EPR
steering in two-qubit Werner states.

D. Higher dimension states and measurements

We now explore the generality of our seesaw method in
quantum systems of dimension d > 2 by calculating bounds
for the critical visibility η∗(d,N,k) of higher dimension
maximally entangled states. Let us start with the simple case
where these states are subjected to only two local general

FIG. 5. Candidates for the optimal set of N = 2 regular trine
(left; k = 3) and regular tetrahedron (right; k = 4) symmetric qubit
POVMs for steering the two-qubit Werner states.

TABLE III. Summary of numerical results for upper bounds of
the critical visibility of d-dimensional isotropic states subjected to
two general POVMs of k ∈ {2, . . . ,d + 1} outcomes.

N = 2

k d = 2 d = 3 d = 4 d = 5 d = 6

2 0.7071 0.7000 0.6901 0.6812 0.6736
3 0.7071 0.6794 0.6722 0.6621 0.6527
4 0.6794 0.6665 0.6544 0.6448
5 0.6665 0.6483 0.6429
6 0.6483 0.6390
7 0.6390

measurements. These calculations are reported for states of
dimensions d ∈ {2, . . . ,6} in Table III. We note that by
increasing the number of outcomes in the measurements from
k = 2 up to k = d the bounds for η∗(d,2,k) are significantly
improved and the optimal sets of measurements are always
composed by projective measurements—even though most
of these scenarios allow extremal nonprojective POVMs.
However, once the number of outcomes achieves k = d + 1
the bound for η∗(d,2,k) provided by the seesaw method
ceases to decrease and it seems that increasing the number
of outputs beyond this point does not improve the results.
Since there only exist projective measurements with up to
k = d outcomes, this result is evidence that allowing POVMs
more general than projective measurements does not increase
the robustness of the steerability of isotropic states. Following
the connection between the steerability of these states and the
joint measurability, this is also evidence that sets of two general
qudit POVMs cannot be more incompatible than sets of two
projective qudit measurements.

Since the scenario where the uncharacterized party is
allowed to perform only two measurements is very particular,
we performed the same calculations reported above for
d-dimensional isotropic states allowing scenarios with three
and four general measurements with outcomes up to d + 1
as well. In these broader scenarios, we also calculated upper
bounds for the critical visibility η∗(d,N,k) of the isotropic
states. However, since the number of parameters increases too
rapidly (exponentially on the number of measurements), the
seesaw method presented some numerical instability, and for
this reason we are not able to reach any conclusions about the
relevance of general POVMs in these scenarios.

E. Mutually unbiased bases

A set of MUBs consists of two or more orthonormal bases
{|ax〉}a in a d-dimensional Hilbert space that satisfy

|〈ax |by〉|2 = 1

d
, ∀ a,b ∈ {1, . . . ,d}, x = y, (13)

for all bases x, y [32]. A set of MUBs is called complete if for a
Hilbert space of dimension d there exists d + 1 MUBs. These
bases can be used to construct sets of mutually unbiased projec-
tive measurements with a high level of symmetry, and for this
reason one might think they would be good candidates for the
optimal set of measurements for measurement incompatibility
and for EPR steering with a maximally entangled state.
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TABLE IV. Comparison between the exact critical visibility
of the isotropic states in dimension d subject to local mutually
unbiased measurements and the upper bound of the same states when
optimizing over general POVMs with k = d .

MUB

N d = 2 d = 3 d = 4 d = 5 d = 6

2 0.7071 0.6830 0.6667 0.6545 0.6449
3 0.5774 0.5686 0.5469 0.5393 0.5204
4 0.4818 0.5000 0.4615
5 0.4309 0.4179
6 0.3863

General d-outcome POVMs

N d = 2 d = 3 d = 4 d = 5 d = 6

2 0.7071 0.6794 0.6665 0.6483 0.6395
3 0.5774 0.5572 0.5412 0.5266 0.5139
4 0.4818 0.4797 0.4615
5 0.4309 –
6 –

We have calculated the critical visibility of the isotropic
states of dimension d ∈ {2, . . . ,6} when subjected to local
MUB measurements using SDP (9) and listed the results in
Table IV. These exact values, calculated by our SDP (9),
show significant improvement over the analytical bounds
obtained in Refs. [55,56] for steering with MUBs and
maximally entangled states. Next, we used the seesaw method
to calculate upper bounds for η∗(d,N,d) of the isotropic states
when locally subjected to sets of general POVMs with d

outcomes for some number of measurements N where MUB
measurements are known to exist. Perhaps surprisingly, in
many cases we found sets of measurements with greater or
equal robustness, showing that MUBs are not necessarily the
best choice of measurements to reveal quantum steering, nor
are they the most incompatible ones. The results are listed
in Table IV. The optimal measurements found by the seesaw
method are all projective measurements in these cases as well.
We remark that in Refs. [57,58], the authors have computed
(analytically) the required visibility η∗(d,2,d) for any pair of
d-dimensional MUB measurements to be jointly performed;
here we have shown that there exist pairs of measurements
that are even more incompatible than mutually unbiased ones.
However, in scenarios where there exist complete sets of
MUB measurements, for dimensions 2, 3, and 4, we were not
able to find measurements more resistant to white noise and
better for steering isotropic states than the MUB ones, which
is evidence that they may be optimal for this task.

V. DISCUSSION

We have used three methods for investigating EPR steering
and joint measurability under restrictive measurement sce-
narios and discussed the applicability of each one. Using
white-noise robustness as a quantifier, we have presented
two heuristic methods for calculating the critical visibility of
quantum states subjected to a finite number of measurements
and one converging method for lower-bounding the same

quantity. Our methods can be easily adapted to other steering
and joint measurability quantifiers.

For two-qubit Werner states, we showed that the best sets
of N ∈ {2, . . . ,5} planar projective measurements are equally
spaced measurements and conjecture this result to be valid
for all N ∈ N. Our upper bounds for the critical visibility
of two-qubit Werner states subjected to planar projective
measurements match the analytical expressions derived in
Refs. [45,46] for equally spaced measurements. We proved
that intuitive notions of equally spaced measurements in the
Bloch sphere, like the vertices of Platonic solids, do not
correspond to the best measurements to show steering with
two-qubit Werner states, nor are they the most incompatible
sets of measurements. We showed that symmetric three-
and four-outcome qubit POVMs are not optimal for steering
the two-qubit Werner states as well. Upper bounds for the
critical visibility of the two-qubit Werner states subjected to
N ∈ {2, . . . ,18} general measurements were calculated. We
provided strong numerical evidence that general POVMs are
not more suitable for steering two-qubit Werner states than
projective measurements and suggested candidates for the
optimal sets of N ∈ {2, . . . ,6} qubit measurements that are
projective and follow a nonintuitive pattern.

Our results for higher dimension isotropic states indicate
that increasing the number of outcomes until k = d improves
the bound for the critical visibility of the state. However,
increasing the number of outcomes beyond the value of the
local dimension of the state does not seem to improve the
bounds, which strengthens the idea that nonprojective POVMs
are not relevant for steering. The candidates for optimal
measurements in all higher dimension scenarios are projective
measurements. Finally, we proved that many incomplete sets of
MUB measurements are not optimal for steering and provided
numerical evidence that complete sets of MUB measurements
could be optimal for steering isotropic states.

Although we presented numerical evidence against the
relevance of nonprojective POVMs for EPR steering, deciding
if projective measurements are indeed optimal for steering in
all scenarios and for all quantum states still remains an open
question. One future direction is to apply similar techniques
for the study of Bell nonlocality. Although some simple
adaptation of our methods can be used to tackle the analogous
problem for Bell nonlocality, the number of parameters in
the problem could make our algorithms impracticable even in
simple scenarios.

All code written for this work is available in a reposi-
tory [38].
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