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Verification of high-dimensional entanglement generated in quantum interference
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Entanglement and quantum interference are key ingredients in a variety of quantum information processing
tasks. Harnessing the generation and characterization of entanglement in high-dimensional state spaces is a
necessary prerequisite towards practical quantum protocols. Here, we use quantum interference on a beam
splitter to engineer hyperentanglement in polarization and discrete frequency degrees of freedom (DOF).
We show how independent measurements of polarization and frequency DOF allow for the verification of
high-dimensional entanglement in the combined state space. These results may indicate new paths towards
practical exploitation of entanglement stored in multiple degrees of freedom, in particular in the context of
high-dimensional quantum information processing protocols.
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L. INTRODUCTION

Quantum entanglement of photons is a crucial resource
for quantum information applications such as quantum key
distribution and quantum teleportation, as well as for studying
fundamental physics in Bell experiments [1-4]. Several de-
grees of freedom (DOF) of photons can be utilized to encode
quantum entanglement, including polarization [5], spatial path
[6], orbital angular momentum [7], time-bin [8] and frequency
[9]. Some of these properties can exist independently of
each other, which enables the entanglement of more than
one property simultaneously, known as hyperentanglement
[10-12]. Photon pairs entangled in multiple properties can
carry more quantum information, making them compelling
for high-capacity quantum communications. Encoding infor-
mation in multiple degrees of freedom may also facilitate
the implementation of certain quantum communication prim-
itives: For instance, complete Bell state measurements can be
performed deterministically for superdense coding or larger
quantum states can be transmitted in quantum teleportation,
thus increasing the capacity of classical and quantum chan-
nels [2,13,14]. Moreover, hyperentanglement can enhance the
fidelity of mixed entangled states in entanglement purification
and increase the state space for multiphoton entanglement and
quantum computing [15-18].
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High-dimensional quantum information processing has
highlighted the need of verifying, certifying and quantifying
the high dimensionality of hyperentanglement. The full deter-
mination of quantifying the amount of entanglement in high-
dimensional quantum states is a daunting challenge, since the
requirement of measuring a complete set of observables in a
global state space is exponentially complex. Hence, it is of
great significance to design wieldy and practical strategies to
verify the amount of entanglement and its dimensionality, in
particular with as few assumptions on the hyperentangled state
as possible.

The objective of this work is twofold: First, we demonstrate
how multiphoton interference on a beam splitter may itself be
harnessed as a tool to engineer hyperentangled states. In our
recent work [19], we utilized time-reversed Hong-Ou-Mandel
(HOM) interference to generate polarization entanglement
in two spatial modes without the usual requirement for dis-
tinguishability in an auxiliary degree of freedom. Here, we
extend this approach to the generation of hyperentanglement
in polarization and discrete frequency modes. Second, after
characterizing the polarization and frequency interference for
this state, we show how independent measurements performed
on each of these degrees of freedom suffice to verify high-
dimensional entanglement under minimal assumptions on the
preparation of the state.

We believe that these results, demonstrating a path towards
generating unconventional quantum states via quantum in-
terference, as well as a practical way of extending results
obtained for single degrees of freedom to the combined
state space may prove valuable tools towards practical high-
dimensional quantum information processing.
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II. GENERATION OF HYPERENTANGLEMENT BY
HONG-OU-MANDEL INTERFERENCE

Entanglement can be engineered in a variety of phys-
ical systems [20-22], with spontaneous parametric down-
conversion (SPDC) in nonlinear materials representing one of
the most efficient ways reported to date. In the SPDC process,
pump photons spontaneously decay into signal and idler pho-
tons, with conservation of momentum and energy resulting
in entanglement of spatiotemporal properties. The generation,
manipulation and detection of polarization-entangled [23-25]
or frequency-entangled [26,27] photons have already been
extensively investigated and widely applied. Nevertheless,
the manipulation is even trickier if the frequency-entangled
photon pair cannot be separated into two spatial modes. A
discrete frequency-entangled Bell state can be represented
as |¥;) = J5(|l1)|w2) — |w2)|wr)), where |wy)2) are well-
separated single-photon frequency bins. First approaches for
generating this state relied on the projection of continuous
frequency spectrum onto well-defined frequency bins prior
to detection [28,29]. A great number of schemes are pro-
posed to create discrete frequency entanglement by using
nonlinear waveguides [30], in-fiber Sagnac loops [31], and
entanglement-transfer from the polarization domain [9]. All
of these schemes mainly focus on the generation of entan-
glement in the frequency domain, whereas simultaneous en-
tanglement in other degrees of freedom would enable various
hyperentanglement-assisted quantum information processing
protocols.

Here, we present a polarization and discrete frequency
hyperentanglement source by quantum interference. The key
part of our source (see Fig. 1) consists of two periodically
poled potassium titanyl phosphate (ppKTP) crystals designed
for type-II quasi-phase matching. They are arranged in se-
quence and oriented with a relative inclination of 90° along
their common propagation axis. These crossed crystals are
placed at the center of a polarization Sagnac interferometer,
which is bidirectionally pumped with a continuous-wave laser.
In the clockwise direction of the Sagnac interferometer [see
Fig. 1(a)], the pump laser can either create a photon pair in
the first crystal |A,, )|D,,) or in the second crystal |D,, )|A,,).
Since both events occur with equal probability, the resultant
quantum state reads

1 A
= —(|Au,) D) + €Dy, )|Au,), 1
[¥)ew ﬁ(' )|Da,) + €| Doy )|Auy)) (1)

where (A) D denotes (anti-)diagonal polarization, w; and w;
are two well-separated frequency bins, and ¢ is the relative
phase factor. By setting ¢ = m, the state can be rewritten in
the H-V polarization basis as

1
= —=(|Hu) V) = [V, ) | Ha)). 2
[V)ew ﬁ(l NV ) = Voo, ) Ho, ) 2

The polarizing beam splitter then sorts the orthogonal polar-
ization states into two distinct spatial modes a and b:
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FIG. 1. Schematic of experimental setup. (a) Clockwise and
(b) anticlockwise directions of (¢) Sagnac interferometer. (d) Hong-
Ou-Mandel interferometer for frequency entanglement. DM:
dichroic mirror, PBS: polarizing beam splitter, HWP: half wave plate,
ppKTP: periodically poled potassium titanyl phosphate, POL: po-
larizer, D> single-photon counting modulator, SMF: single mode
fiber, PC: polarization controller, FBS: in-fiber beam splitter, WP:
wave plate, a/b: output port of PBS, ¢/d: output port of FBS.

Analogously, for the counterclockwise direction of the Sagnac
loop [see Fig. 1(b)], one obtains biphotons in state

1
= —(|Hu)alVen)b = Ve )61 Hep )a)- 4
[V )cew ﬁ(l YalVan)b = [V )b Har )a) 4)

Superimposing the two states |V )ccw and | )cw results in a
maximally polarization-frequency hyperentangled state

W) @ ¥,) = 3(HV) + ¢ |VH)) ® (|Joyw)) — |ann)),
5)

where ¢, is the phase of the pump polarization state, which is
set outside of the Sagnac loop.

Since only pairs of photons antiparallel in their polarization
with respect to the rectilinear reference frame of the PBS
(|HV) or |VH)) are routed into two separate output ports, the
unwanted polarization-parallel contributions (|HH) or |[VV))
can be eliminated by postselecting on coincidences between
two distinct spatial modes. Thus, the PBS in the Sagnac
interferometer actually acts as state purification to improve the
fidelity of the polarization-entangled state.

III. EXPERIMENTAL CHARACTERIZATION OF
THE HYPERENTANGLED STATE

Akin to our previous experimental setup in Ref. [19],
the hyperentanglement source is implemented by pumping a
pair of crossed 10-mm-long ppKTP crystals with a grating
stabilized laser emitting continuous wave at the wavelength
of 405 nm. The pump beam is set to be linearly polarized at
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FIG. 2. Correlations in the polarization subspace. The twofold
coincidence counts are measured in two mutually unbiased D-A and
H-V bases. All error bars in experimental data are estimated by
statistical methods assuming a Poisson distribution.

45° with respect to the reference frame of the PBS, making the
SPDC process occur with equal probability in clockwise and
counterclockwise directions. To achieve the desired diagonal
and antidiagonal polarizations, we design a V-groove oven
such that two nonlinear crystals oriented along the oven
are phase-matched with diagonally or antidiagonally polar-
ized photons, respectively. By superimposing down-converted
photons emitted from both propagation directions on a PBS,
they are sorted into distinct spatial modes deterministically
(see Appendix A). Our source produces hyperentangled pho-
ton pairs at a rate of 4.4 kcps per mW of pump power
with a symmetric heralding efficiency of 17%. Without any
bandpass filtering this corresponds to a spectral brightness of
8.3 keps/nm per mW of pump power.

We verify the quantum correlations of the produced state
successively in the polarization and frequency subspace. For
the polarization degree of freedom we certify entanglement
in an assumption-free manner while for the frequency degree
of freedom we present two methods with different levels of
assumptions about the state. In the next section, we combine
these results to prove the generation of high-dimensional
entanglement.

To verify the entanglement in the polarization domain,
we measure two-photon correlations in two mutually unbi-
ased bases, yielding interference visibilities of Vy.y =99.3 +
0.3% in the H-V basis and V, p, = 96.4 £ 0.5% in the A-D
basis (see Fig. 2). These visibilities imply lower bounds of
F, 2 0.979 and C, = 0.958 on the Bell-state fidelity and
concurrence, respectively.

The verification of entanglement in the discrete frequency
subspace is more elaborate due to the difficulty of a mutually
unbiased measurement in the frequency domain. To separate
the polarization from the frequency domain, polarizers are
placed before the frequency analysis, as depicted in Fig. 1(d).
The existence of two separated frequency bins in each spa-
tial mode is verified by a single-photon spectrometer [see
Fig. 3(a)], which shows a good overlap of the spectra in
both spatial modes. While a nonlocal measurement of the
coherence of frequency-entangled states is difficult without
the assistance of nonlinear optical process [32] and a time-
resolved measurement [33], it can be quantified by utilizing
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FIG. 3. Correlations in the frequency subspace. (a) Spectral dis-
tribution of the two spatial modes observed by a single-photon spec-
trometer. (b) Normalized coincidence rate after the Hong-Ou-Mandel
interferometer as a function of the relative path delay. (c) Real part
and (d) imaginary part of estimated restricted density matrix.

spatial beating in HOM interference [34-36]. This nonclassi-
cal beating can be observed by scanning the time of arrival
of one of the photons incident on the 50 : 50 beam splitter,
which constitutes a HOM interferometer. The corresponding
interference fringes can be observed in the twofold coinci-
dences between the two output ports of the beam splitter
[see Fig. 3(b)]. As a consequence of the antisymmetry of
the state |V, ), we can observe photon-antibunching at zero
path delay. Discrete frequency-entanglement manifests itself
in sinusoidal oscillations of the interference fringes within a
Gaussian envelope as a function of relative time delay 7. This
can be modeled with a coincidence probability of [9,37]

p('(r) =

S (nt + )| 1
3 2owr¢w

f -
) or|t| < >
(6)
where 7 is relative arrival time delay of two photons at the
beam splitter, 7. is the single-photon coherence time that
equals the base-to-base envelope width, and p = wy — w; is
the detuning of two well-separated frequency bins. The mag-
nitude of the oscillations is parametrized with the visibility V,,,
while ¢, is a phase offset. A fit of our measurement data to
Eq. (6) reveals the parameters of the restricted density matrix

Po» Which reads
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032302-3



YUANYUAN CHEN et al.

PHYSICAL REVIEW A 101, 032302 (2020)

in the computational basis {|wjw;), |@@2), |rw;), |wrw2)}
[7]. Outside of the inner 2 x 2 submatrix, the density-matrix
elements are set to zero, because of energy conservation in
the process of SPDC with a narrow-band pump laser. The
balance parameter p,, and the visibility V,, satisfy the physical

constraints 0 < p, < land 0 < V—;” < VPull — pu).

Based on our measurement results, we estimate a coher-
ence time of 7, & 3.8 ps, which s inversely related to a single-
photon frequency bandwidth of A fpwnm =~ 0.24 THz or a
wavelength bandwidth of AApwpm =~ 0.53 nm. The frequency
detuning p ~ 1.75 THz is much larger than A frwm, which
again confirms the separation of the two frequency bins. The
resulting visibility is V,, &~ 94.3%, while the relative phase is
estimated to be ¢,, = 179.6°, which is close to 7. The balance
parameter is calculated from the single-photon spectra of
Fig. 3(a), resulting in p,, & 0.52. Thus we are able to estimate
the restricted density matrix p,, as depicted in Figs. 3(c) and
3(d). Under the assumption that the estimated V,, indeed cor-
responds to the visibility in the restricted density matrix and
energy is exactly conserved in the SPDC process, the fidelity
to the Bell state | W) follows from F,, = Tr(p, |V, ) (¥, |) =
0.971, which implies a frequency subspace concurrence of
C, =~ 0.942.

To demonstrate the versatility of our source in the
frequency domain, we changed the detuning of the frequency
bins x by increasing the temperature of the nonlinear crystal
while monitoring the fidelity to the polarization Bell state
|\I/ljr ). For instance, we observed a fidelity of ~0.965 in the
scenario of p = 7.35 THz by setting temperature at 50 °C,
and a fidelity of ~0.958 in the scenario of i = 14.12 THz by
setting temperature at 85°C. Moreover, the measured photon
pair rates are almost constant irrespective of the frequency
detuning.

The preceding verification of entanglement in the fre-
quency subspace is only valid under the assumption that the
visibility V,,, which is extracted from a fit of the experimental
data to Eq. (6), indeed corresponds to V,, in the restricted
density matrix, Eq. (7). To provide a stronger form of en-
tanglement verification, we now derive a lower bound for the
fidelity in the discrete frequency subspace that relies only on
the assumption of energy conservation but does not require
any other constraints to be imposed on the density matrix.

This lower bound is derived as a function of the experi-
mentally measured visibility, which as shown in Appendix D
is given by

2[{w ;| plwrwy )|

(8)

T (wployr) + (@i ployan)

Now, the fidelity F,, of p with the maximally entangled
state |W_ ), after optimizing over the path delay is shown in
Appendix D to be

F, = 3((0102| ploiw2) +{@ro1|plwrw)))+ (@1 a| plawr) |

9
2 2|{@1ma|plwren)|. (10)
Assuming  energy  conservation, which  implies

(w 0| ploywy) + (w0 |pleyw ) =1, we arrive at the

lower bound of
F, >V, (1)

All details are outlined in Appendix D.

Based on the experimentally measured N™™ and N™" (see
Appendix D for details), this results in a measured lower
bound of the fidelity in the discrete frequency subspace of
F,, = 0.855 that relies exclusively on the assumption of en-
ergy conservation, which is a stronger result than our previous
method.

The measured high fidelities of the reduced two-qubit
states in both the polarization and frequency subspaces, with
respect to a maximally entangled two-qubit state, indicate the
presence of bipartite entanglement in both subspaces and its
absence on the global state across the frequency-polarization
partition—suggesting the presence of hyperentanglement. In
the following, we show that this is indeed the case by verifying
the generation of high-dimensional entanglement.

IV. VERIFICATION OF HIGH-DIMENSIONAL
ENTANGLEMENT

Having estimated the value of both the polarization and
frequency subspace fidelities, we can now infer entanglement
properties of the two-ququart global state encoded jointly in
the polarization and frequency DOF. To do so, we formulate
an optimization problem, in the same fashion as Ref. [23].
Namely, we search for a global state of two ququarts whose
reduced two-qubit states satisfy the properties we have ex-
perimentally measured, i.e., have values for the fidelity with
respect to a maximally entangled two-qubit state that are
equal to those that were measured. Among all possible two-
ququart states that have subspace fidelities compatible with
the measured ones, we must choose the one with lowest
fidelity with respect to a maximally entangled two-ququart
state, in order not to overestimate the entanglement of the
global state. Consequently, the fidelity of the optimization
state will constitute a lower bound for the fidelity of the
experimental state.

This problem can be efficiently solved via semidefinite
programming (SDP), a class of convex optimization problems.
Let pp,wip,epr e the global (4 x 4)-dimensional state com-
posed of two polarization qubits and two frequency qubits,
shared by parties A and B, which are the recipients of photons
in spatial mode @ and b, respectively. Let F, be the fidelity
of the reduced polarization state, pp,p, = Ttu,0, (Pp,w,ppawp )
with respect to a (2 x 2)-dimensional maximally entangled
state and F,, be the fidelity of the reduced frequency state,
Puwrws =Trmp3(pp_4,,,_4p3w3), also with respect to a (2 x 2)-
dimensional maximally entangled state. Then, a lower bound
for the fidelity F,,, of the global state py,0,p,w, With respect to
a (4 x 4)-dimensional maximally entangled state is given by

given F,, F,
Fpop > minTe(pp,0,py0s |07 ) (07 )
s.LE = Tr(py,p, |97) (@3], (12)
E,y = Tt(pu,u, | 93)(PF]),
Posanpgs Z 05 Tr(Pp,wipyey) = 1,

where |®) = ﬁ >4 i) [23].
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We solve this problem for a polarization subspace fidelity
of F, =0.979, once using the frequency subspace fidelity
obtained with our model of F, = 0.971, and once for the
frequency subspace fidelity obtained only assuming energy
conservation of F, = 0.855. The solution yields the lower
bounds of F,, = 0.950 and F,, = 0.834, for each method,
respectively.

From the fidelity of the global state it is possible to estimate
the dimensionality of its entanglement. Entanglement dimen-
sionality is a quantifier that represents the minimum number
of levels one needs to faithfully represent the state and its
correlations in any global product basis. A lower bound for the
entanglement dimensionality d., of a (d x d)-dimensional
state that has a fidelity F with respect to the maximally
entangled state is given by

dent 2 [dFT, (13)

where [-] is the ceiling function. We refer to Refs. [38,39] for
a detailed proof. Using the above relation, from the fidelity
lower bound of Fj,, = 0.950 obtained from the first method
we certify deyy = 4. Similarly, from the fidelity lower bound of
Fo = 0.834 we also certify de, = 4, an even stronger result
since it is achieved with fewer assumptions on the preparation
of the state. This concludes the proof that high-dimensional
entanglement has indeed been produced in our setup via
hyperentanglement.

V. DISCUSSION

Quantum interference is a versatile tool in the quantum
engineering toolbox. Here we make dual use of this phe-
nomenon; both to generate a polarization discrete-frequency
hyperentangled state without the usual requirement for de-
tection postselection and to analyze high-dimensional entan-
glement stored in two independent degrees of freedom. The
verification of high-dimensional entanglement further verifies
the quality of the produced hyperentangled state.

Entanglement in multiple degrees of freedom enables us
to encode many qubits into different properties of single
photons. Since the hyperentangled state prepared by our ap-
proach can readily be transformed into polarization-frequency
cluster states, we hope that our work can pave the avenue
for one-way quantum computation. Here, the challenge of
implementing multiqubit gates is shifted to the capability of
creating cluster states [40]. Furthermore, independent mea-
surements in polarization and frequency DOF may be suf-
ficient for entanglement witness of hyperentangled cluster
states by using analogous methodology [41]. Its quality is
therefore well verified, making it an ideal candidate for more
complex quantum applications.

The versatility of our approach enables its extension to
other platforms, such as optical waveguides or integrated pho-
tonics. We hope that our work inspires experiments which har-
ness quantum interference to engineer hyperentangled states
in other photonic degrees of freedom, such as orbital angular
momentum, thereby setting the stage for quantum information
processing in ever more complex quantum systems.
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APPENDIX A: EXPERIMENTAL SETUP

The experimental setup of our polarization and discrete
frequency hyperentanglement source is depicted in Fig. 4.
We generate the two-photon states in the form of Eq. (1) by
pumping a pair of crossed ppKTP crystals with a grating-
stabilized laser diode emitting continuous wave at a wave-
length of 405 nm (Toptica DL Pro). Through a PBS and a
zero-order HWP with its optical axis oriented at 22.5°, the
pump beam is set to be linearly polarized at 45° with respect
to the reference frame of the PBS, making the spontaneous
parametric down conversion (SPDC) process occur with equal
probability in the clockwise and counterclockwise directions.
To achieve the desired diagonal and antidiagonal polariza-
tions, we designed a V-groove oven such that two crossed
crystals are oriented along the oven as shown in the inset of
Fig. 4. The nonlinear crystals are placed flat inside the oven,
which means they are phase-matched for SPDC with diago-
nally or antidiagonally polarized photons, respectively. The
crossed crystals scheme utilizes two mutually orthogonally
oriented 10-mm-long ppKTP crystals. They are manufactured
for type-II collinear phase matching with pump (p), signal
(s), and idler (i) photons at approximately center wavelengths
of A, = 405nm and A;; ~ 810 nm at a crystal temperature
of 33°C. A dual-wavelength HWP is added to compensate
the phase difference caused by different group velocities of

FIG. 4. Experimental setup of polarization-frequency hyper-
entanglement source. LD: laser diode; PBS: polarizing beam splitter;
HWP: half wave plate; WP: wave plate; DM: dichroic mirror; pp-
KTP: type-1I periodically poled potassium titanyl phosphate crystal;
TEC: temperature controller; LP: long pass filter, POL: polarizer.
The top-left inset illustrates that the design of V-groove oven with
inclination of 45° along the optical axis enables the generation of
photon pairs with diagonal or antidiagonal polarization. The PBS and
HWP inside the Sagnac loop are operated at the dual wavelengths of
405 and 810 nm.
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FIG. 5. HOM interference of frequency entanglement.

pump beam and down-converted photons in ppKTP crystals.
By superimposing down-converted photons emitted from both
propagation directions on a PBS, they are sorted into distinct
spatial modes deterministically. Then, the down-converted
signal and idler photons are separated from the pump beam
by using a dichroic mirror. Two long-pass filters are used to
eliminate the remaining pump and background photons. To
erase spatial “which-crystal” information, the down-converted
photons are coupled into a single-mode fiber.

For analyzing the polarization correlation of the hyper-
entangled state, we measure two-photon interference in two
mutually unbiased bases assisted by polarizers prior to detec-
tion. For analyzing the frequency correlation of hyperentan-
glement, we observe the spatial beating of nonoverlapping
optical frequencies by scanning the arriving time of two pho-
tons at a balanced beam splitter, which constitutes a Hong-Ou-
Mandel interferometer. Then the down converted photons are
detected by silicon avalanche photodiodes, and twofold coin-
cidence events are identified with a time window of ~3 ns.
The measurement results enable us to characterize polariza-
tion and frequency entanglement in independent subspaces.

APPENDIX B: HONG-OU-MANDEL INTERFERENCE
FOR FREQUENCY ENTANGLEMENT

Here, we simply demonstrate the process for HOM in-
terference of two-dimensional frequency entanglement. The
basic schematic is depicted in Fig. 5. The two-photon state
from a SPDC process can be described as

) = f f dwsdw, f(wy, w)al (w,)a) ()|0).  (B1)
0 0

The operation of a balanced beam splitter can be expressed as

A LR, AF
a; (wy) = E[al(wx) + (12((1)_\»)],
1
al(wy) = E[a{(wi) — ab(w))]. (B2)

As we introduce a tunable time delay 7y, it generates phase
shift exp(—iw;t) to the idler photon with respect to the signal
photon. Thus, after the operation of 50 : 50 beam splitter, we
get two-photon state as

W) = f f dodo;f (o, o)e™ " [ia] (w,)a] (w;)
2 0 0

+ id (wy)al (@) + &} (w)al(wy) — al (w)al(@)]]0),
(B3)

where the subscript 1/2 represents two output modes of
the beam splitter. For the postselected coincidence counts
by two detectors, only the last two terms of Eq. (B3) are
nonvanishing. So it can be simplified to

|1//) = 1/ / dwsdwif(w.h w'_)e—iw.n
2 0 0

x [a](w)al(wy) — a] (@,)al (@)1]0)

l o0 o0 .
= f / dodoil f(ws, w)e™" ™
2 0 0

— flwy, w)e Ml (w,)al(w))0).

(B4)

Because two photons after the beam splitter are indistinguish-
able, we substitute @, and w; with @, and w,. By multiplying
by e~"“™1 to cancel the global phase, we obtain

1 =] =]
|[y) = 5/ / doydws| f(w1, w2) — f(w, o)
0 0

X e—i(w|—w:)71][,r(wl)ﬁ;(w2)|0)_ (BS)

The detection operators of two detectors in different output
modes are

p(+) 1 = i

EM = — dwai(wy)e ",
\ o /(; 1a(w)

A.:+) = ; /oo da)gﬁg(a)?_ )e_iwlll. (B6)
- V2 Jo

Thus we can calculate £57E[™|y) as

. . l o0 o0 .
EVETW) = 5 / / dwrdw(@))a (@ )e™ "
0 0

I Bl
xe—larzl:_/ / dw,ldw,?[f(w’l'w,’)
2Jo Jo ) )

— f(@h, @)™ =4l ())ad(w))|0)

1 o0 o0
= —f / dwjdw,[f(wy, wy)
4 0 0

_f(wz'wl)e—i(w|—w1)r|]e—ia)1l| e—iwglglo).

(B7)
where we add o to distinguish between the symbols for
photon and detection frequency, albeit @’ = . Finally, the

coincidence probability P(7;) as a function of time delay can
be expressed as

P(ri) = (WIE{TEVEVEM 1)

=(L)~/ / dodw| f(wr, @)
4 o Jo

—_ f(w?_' W )e—iluu—wz)rl ]e—iwm e—iw:[:

o0 o0
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o Jo
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1 o > 2 2
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4 0 0
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FIG. 6. Verification of hyperentangled state after HOM interference. By setting the relative path delay at zero, we observe (a) singles and
(b) coincidences in opposite spatial modes, (c) singles and (d) coincidence in identical spatial modes, and (e) characterization of polarization
entanglement at highest interference peak position. By setting the relative path delay at 0.08 mm, we observe (f) singles and (g) coincidences
in opposite spatial modes, (h) singles and (i) coincidence in identical spatial modes, and (j) characterization of polarization entanglement at

the lowest interference dip position.

If f(wy, @) is an even function, we have f(w;,wy) =
f(wn, wy), such that P(7;) exhibits a dip at position of 7; = 0.
On the other hand, if f(w;, @) is an odd function, we have
flw1, w2) = = f(w2, ;) such that P(7;) exhibits a peak at the
position of 7; = 0.

APPENDIX C: VERIFICATION OF
HYPERENTANGLEMENT AFTER HONG-OU-MANDEL
INTERFERENCE

To verify the quality of hyperentanglement after HOM
interference for more practical quantum information appli-
cations, we build one monochromator, consisting of two-
plane-convex lens and one reflective grating, to analyze the
frequency correlation. Through experimental verification, this
monochromator reaches high resolutions up to 0.2 nm when
rotating the grating by 0.01° for each step. We first set the
relative path delay at zero such that the interference fringe
is at highest peak position. As shown in Figs. 6(a)-6(d),
we could observe twofold coincidences of frequency bins
in the opposite and identical spatial modes (assisted by an
in-fiber beam splitter). Almost all frequency coincidences are
measured in opposite spatial modes. Figures 6(f)-6(i) demon-
strate the two-photon coincidence events in the scenario of
setting the relative path delay at 0.08 mm such thats the inter-
ference fringe is at the lowest dip position. Now most of the
coincidence events exist in identical spatial modes. Addition-
ally, we observed polarization visibilities of 87% in H-V basis
and 82% in A-D basis at maximum position [see Fig. 6(e)]
and visibilities of 88% in H-V basis and 78% in A-D basis at
dip position [see Fig. 6(j)] by measuring interference contrast.
We attribute the decrease of polarization visibility to imperfect
input hyperentanglement states, imperfect mode matching and
residual misalignment at the PBS, finite PBS extinction ratio,
and accidental coincidences caused by interference.

APPENDIX D: FIDELITY LOWER BOUND FOR
THE DISCRETE-FREQUENCY SUBSPACE

In this section we demonstrate how to obtain a fidelity
lower bound for the generated state p in the discrete frequency
subspace withrespect to amaximally entangled state from the
experimentally measured visibility

max min
L Nma NP

= (D1)
N(max + Mmm

w

where N (N(‘,“"“) is the maximum (minimum) number of
coincidence counts as a function of path delay [see Fig. 3(b)].
We start by modeling the nonlocal measurement per-
formed by the HOM interferometer and detection apparatus
as a two-outcome positive-operator-value measure (POVM),
which acts on the joint frequency space of the two photons,
corresponding to the bunching and the antibunching effects.
The antibunching outcome corresponds to the POVM ele-
ment |V, )(V |, where |V ) = %(kulwz) — |wywy)), and
the bunching outcome corresponds to the POVM element
1—|¥, )(V, |, where 1 is the qubit identity operator. A
coincidence detector count indicates an antibunching outcome
while a single detector count indicates a bunching outcome.
The probability p of an antibunching event is then given by

A
N total

where N, is the total number of coincidence counts and Ny
is the total number of detection events.

The path delay of one of the photons results in a phase
shift ¢, which is modeled by the one-parameter qubit unitary

Uy given by

For a measurement of a pair of photons, one of which
suffered a phase shift ¢, the probability of antibunching is then

p=Te(|¥V, (Y, |p) =

(D2)

1
0

0

U¢ = ’ L’i¢ (D3)
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given by

¢

N
p=Tr(|V, ) (V| pp) = N‘ ,
total

(D4)

where we define py := (1 @ Uy)p(1 ® Uh, N? is the number
of coincidence counts at phase shift ¢ and the total number of
detection events is constant for all ¢.

Now, notice that this probability corresponds exactly to
the fidelity F,(pgy) = Tr(|¥,_ ) (V| py) of the state py with
respect to the maximally entangled state |W_), thus

¢

N
Fw(p ) = <.
¢ Nlolal

(D5)

Setting F™™ := max, F,(py) and equivalently F™" :=
miny F,,(py) allows us to express the experimentally mea-
sured visibility V,, in Eq. (D1) in terms of the fidelity:

Fmax _ Fmin

= — (D6)
Fmax 4 Fmin

Calculating explicitly FJ™* we get
F* = max sl plwi12) + (01| plorw)) +

—e?(wm|plorw)) — e (wrwy|plwran)] (D7)

s (@i2]plorws) + (@201 | plenwr)) +

+ (@1 | plorwy)|, (D8)
and equivalently for F™n,
F" = (@10 plowy) + (@01 | plwrwr)+
— w102|plorwy)]. (D9)

Substituting in F"** and F"" into Eq. (D6), one arrives at

2[{wiwa|planw )]
v, — . (D10)
(@) |plwiwy) + (W |plwywy)

To achieve the final goal of relating the measured quantity
V., to the fidelity of the generated state p, we turn to the
expression of F™™ in Eq. (D8) and bound the first term of
the sum according to

(wws|plwyan) + (wywi|planw;)

(DI1)
(D12)

> 2/ (@] plwiwn) (@w)|plwyw:)
2 2[(w@2|plwrwr)],
by applying the inequality vab < %(a + b) for non-negative
real numbers a and b in the first step and the Cauchy-Schwarz

inequality |(mn|p|nm)| < /(mn|p|mn){(nm|p|nm) in the sec-
ond step. Consequently,

(D13)
(D14)

F'™ = 2|{wiwa| plwrw)|
= V,({(wim|plowz) + (oo | ploywr)).

Finally, we make the assumption of energy conserva-
tion, which implies (wjwi|p|wiw)) = (@202 plenw:) =0
and (s |p|w1w,) + (w,w|planw,) = 1, to arrive at our
final fidelity lower bound of

Fr >, (D15)
concluding that the experimentally measured quantity V,, is
a direct lower bound for the fidelity of the prepared state in
the frequency subspace with respect to a maximally entangled
state, under the assumption of energy conservation.

Energy conservation is the only assumption about the
source that is necessary to guarantee the validity of this lower
bound. However, this is a very well physically motivated as-
sumption that is also encouraged by the single-photon spectra
in Fig. 3(a), which show two distinct frequency modes, sym-
metrically distributed around half the pump photon energy.
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