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Quantum communication offers advantages such as enhanced 
security in quantum key distribution (QKD) protocols1 
and increased channel capacities2 with respect to classi-

cal means of communication. All of these improvements, ranging 
from early proposals3 to recent exciting developments such as fully 
device-independent QKD4,5, rely on one fundamental phenom-
enon: quantum entanglement. Currently, the workhorse of most 
implementations is entanglement between qubits—that is, between 
two-dimensional quantum systems (for example, photon polariza-
tion). However, it has long been known that higher-dimensional 
entanglement can be useful in overcoming the limitations of qubit 
entanglement6,7, offering better key rates8, higher noise resistance9,10 
and improved security against different attacks11.

Attempting to capitalize on this insight, recent experiments have 
successfully generated and certified high-dimensional entangle-
ment in different degrees of freedom. In particular, the canonical 
way of generating two-dimensional polarization entanglement in 
down-conversion processes already offers the potential for explor-
ing entanglement in higher dimensions. This can be achieved by 
exploiting spatial degrees of freedom12,13, orbital angular momentum 
(OAM)14–16, energy–time-based encodings17–20, or combinations 
thereof in hyper-entangled quantum systems21,22. High-dimensional 
quantum systems have recently also been explored in matter-based 
systems such as caesium atoms23 and superconducting circuits24. 
Thus, high-dimensional quantum systems are not only of funda-
mental interest but are also becoming more readily available.

In this context, the certification and quantification of entangle-
ment in many dimensions is a crucial challenge since full state 
tomography (FST) for bipartite systems of local dimension d requires 
measurements in (d +  1)2 global product bases (that is, tensor prod-
uct bases for the global state)25, which quickly becomes impractical in 
high dimensions. Due to the complexity of realizing measurements  

in high-dimensional spaces, previous experiments that aimed to 
certify entanglement dimensionality (also known as Schmidt num-
ber) often had to resort to assumptions about the underlying quan-
tum state ρ, including, amongst others, conservation of angular 
momentum26, subtraction of accidentals27, perfect correlations in 
a desired basis28, or the assumption that the experimentally gener-
ated state is pure29. Although relying on such assumptions allows 
for a plausible quantification of entanglement dimensionality, it 
is not enough for unambiguous certification, which is desirable 
for secure quantum communication based on high-dimensional 
entanglement. The certification of the Schmidt number of a state 
is crucial for this task since a high-dimensional entangled state 
with low Schmidt number is equivalent under local operations and 
classical communication (LOCC) to a low-dimensional entangled 
state. Hence, unwieldy or inefficient entanglement estimation 
would strongly mitigate possible advantages of high-dimensional 
encoding. It is therefore of high significance to determine efficient 
and practical strategies for certifying high-dimensional states and 
quantifying their entanglement.

Here, we present an efficient adaptive method that is tailored to 
better harvest the information about entangled states generated in a 
given experiment, without the need for any assumptions about the 
(generally mixed) underlying state and requiring measurements in 
only two global product bases, regardless of the dimension of the 
state. Our certification method can be implemented in any physical 
platform that is suitable for high-dimensional quantum information 
processing. For the purpose of assumption-free state certification, 
we certify the fidelity F(ρ, Φ) of the experimental state ρ to a previ-
ously identified suitable target state Φ∣ ⟩ . We show that measure-
ments in only two global product bases, ∣ ⟩mn{ } m n,  and ĩ∣ ⟩∼j{ }*

i j, ,  
are sufficient to select Φ∣ ⟩  and to bound the fidelity from below 
by a quantity ρ Φ ρ Φ≤∼F F( , ) ( , ). For the purpose of assumption-free 
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High-dimensional encoding of quantum information provides a way of transcending the limitations of current approaches to 
quantum communication, which are mostly based on the entanglement between qubits—two-dimensional quantum systems. 
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to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount 
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NATURE PHYSICS | VOL 14 | OCTOBER 2018 | 1032–1037 | www.nature.com/naturephysics1032

mailto:nicolai.friis@univie.ac.at
mailto:marcus.huber@univie.ac.at
http://orcid.org/0000-0003-1950-8640
http://orcid.org/0000-0001-8395-160X
http://orcid.org/0000-0003-1985-4623
http://www.nature.com/naturephysics


ARTICLESNATURE PHYSICS

entanglement certification and quantification, we use our fidelity 
bound ρ Φ∼F ( , ) to certify the Schmidt number of the state.

One of the most surprising consequences of our results is the 
fact that all pure bipartite quantum states in any dimension can 
be faithfully certified by measurements in only two global prod-
uct bases. We prove this statement by deriving a tight lower bound 
to the fidelity with an appropriately chosen target state. All that 
is required for this certification is an educated guess of the cor-
responding Schmidt bases, which can be inferred from the physical 
set-up at hand for all typical quantum optical platforms. The more 
accurate the identification of these bases, the higher the confidence 
in the certified state.

For any identified target state Φ∣ ⟩ , the fidelity bound becomes 
exact when the set-up indeed generates the pure state Φ∣ ⟩  or the 

mixed state obtained by dephasing Φ∣ ⟩ . We demonstrate that this 
method can be generalized to measurements in multiple global 
product bases, yielding ∼F M( ) (ρ, Φ), in which M +  1 is the total 
number of measurement bases, and in prime dimensions the fidel-
ity bounds using measurements in d +  1 bases (M =  d) become 
exact for all states—that is, ∼F d( ) (ρ, Φ) =  F(ρ, Φ). Moreover, deriving 
general decompositions for dephased maximally entangled states 
further allows us to prove that unbiased measurement bases indeed 
provide a necessary and sufficient condition for tight Schmidt 
number bounds for all pure states ρ Φ Φ= ∣ ⟩ ⟨ ∣  and for maximally 
entangled states subject to pure dephasing. Our method can also be 
used for entanglement quantification by providing lower bounds 
on the entanglement of formation30,31. Here, our bounds outper-
form previous methods in terms of their noise robustness and the 
number of certified e-bits32. Finally, our bounds are also shown to 
be applicable for the certification of certain types of multipartite 
quantum states.

To put these theoretical predictions to the test in realistic cir-
cumstances with actual noise, we devise and carry out an experi-
ment based on photons entangled in their OAM, allowing our 
approach to prove its mettle. In our experimental implementa-
tion, measurements are realized using computer programmable 
holograms implemented on spatial light modulators (SLMs). 
Employing the theoretical methods developed here, we are able to 
certify high target-state fidelities and verify record entanglement 
dimensionality: 9-dimensional entanglement in 11-dimensional 
subspaces, without any assumptions on the state itself. We use our 
experimental set-up to fully explore the performance of our crite-
ria for non-maximally entangled states, showcasing the flexibility 
of the derived results.

Entanglement dimensionality
Consider a typical laboratory situation for preparing a high-dimen-
sional quantum system in a bipartite state ρ that is to be employed 
for quantum information processing between two parties. In order 
to be useful, this state should be close to some highly entangled 
target state that is normally required to have a high purity. Let us 
therefore consider a pure target state Φ∣ ⟩  with a desired Schmidt 
rank k =  kmax. The Schmidt rank is a measure of the entanglement 
dimensionality of the state and represents the minimum number 
of levels one needs to faithfully represent the state and its correla-
tions in any global product basis. Ideally, the target state’s Schmidt 
rank is equal (or close) to the (accessible) local dimension, kmax =  d, 
where we take the local Hilbert spaces to have the same dimension, 

Hdim( )A  =  Hdim( )B  =  d. For mixed states ρ the Schmidt rank gen-
eralizes to the Schmidt number

ρ ψ ψ= ∣ ⟩ ⟨ ∣
ρ ψ ψ∣ ⟩ ∈ ∣ ⟩D

k( ) inf { max {rank(Tr )}} (1)p B i i( ) { ( , ) }i i i i

where the infimum is taken over all pure state decompositions, that 
is, ρD( ) is the set of all sets ψ∣ ⟩p{( , )}i i i

 for which ρ ψ ψ= ∑ ∣ ⟩ ⟨ ∣pi i i i ,  
∑ =p 1i i , and 0 ≤  pi ≤  1.

The Schmidt number hence quantifies the maximal local dimen-
sion in which any of the pure state contributions to ρ can be con-
sidered to be entangled and we hence call k the entanglement 
dimensionality of ρ. Note that this implies k ≤  d. For example, any 
two-qubit entangled state (for which d =  2) has an entanglement 
dimensionality k =  2. A higher-dimensional entangled state, like a 
two-qutrit state (d =  3), could have Schmidt number k =  3, in which 
case it would indeed carry qutrit entanglement, or it could have only 
k =  2, in which case the state would be LOCC equivalent to a two-
qubit entangled state. In the latter example, even though the state 
has a higher local dimension, the entanglement dimensionality, 
which is our quantity of interest, is not higher. Trivially, all separable 
states have k =  1.
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Fig. 1 | Experimental set-up. a, A 405!nm CW laser pumps a 5!mm ppKTP 
crystal to generate a pair of infrared (810!nm) photons via the process 
of Type-II spontaneous parametric down-conversion (SPDC), which are 
entangled in their OAM. The pump is removed by a dichroic mirror (DM) 
and the two photons are separated by a polarizing beam splitter (PBS) and 
incident on two phase-only spatial light modulators (SLMs). A half-wave 
plate (HWP) is used to rotate the polarization of the reflected photon 
from vertical to horizontal, allowing it to be manipulated by the SLM. In 
combination with single-mode fibres (SMFs), the SLMs act as spatial 
mode filters. The filtered photons are detected by single-photon avalanche 
photodiodes (not shown) and time-coincident events are registered by a 
coincidence counting logic (CC); b,c, Upper rows: examples of computer-
generated holograms displayed on the SLMs for measuring the photons 
in a d!= !11 dimensional space. Lower rows: intensity images of the modes 
filtered by these holograms (see the Supplementary Information for details 
on how these intensity images were obtained). Left-hand panel: standard 
LG basis modes with azimuthal quantum number ℓ = −5 (b) and − 4 (c). In 
b, right-hand panels show three bases states from a MUB (denoted MUB1, 
MUB2, MUB3). In c, right-hand panels show three bases states from a 
tilted basis (equation (6)) (denoted TILT1, TILT2, TILT3).
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Target state identification
The task at hand is to certify that the state ρ generated in the lab 
is indeed close to the intended target state Φ∣ ⟩  and thus provides 
the desired high-dimensional entanglement. One immediate first 
approach is to start with local projective measurements in the local 
Schmidt basis, that is, the global product basis ∣ ⟩ = … −mn{ } m n d, 0, , 1, which we designate as our standard basis. These bases can typically 
be identified from conserved quantities or the set-up design, but 
depending on the physical set-up, the corresponding measurements 
are realized in different ways. In essence, a good choice for the stan-
dard basis provides a good target state. For instance, in an optical 
setting using OAM (as we employ in the experiment reported in this 
article) the chosen standard basis is the Laguerre–Gauss (LG) basis. 
In this case, these measurements are performed by coincidence 
post-selection after local projective filtering. That is, SLMs pro-
grammed with the phase pattern of a specific state ∣ ⟩mn  act as local 
unitary operations, which are followed by single-mode fibres (SMF) 
as local filters, and the number Nmn of coincidences between local 
photon detectors is counted for each setting corresponding to fixed 
values of m and n. In this way one can obtain the matrix elements

ρ⟨ ∣ ∣ ⟩ = ∑mn mn
N

N (2)mn

k l kl,

A measurement in one global product basis can be realized by 
one d-outcome local measurement or equivalently replaced by d 
single-outcome local measurements. The latter case employs the 
use of d local filter settings (d2 filter settings globally) to obtain the 
values ρ⟨ ∣ ∣ ⟩mm mm . These are used to nominate a target state 
Φ λ∣ ⟩ = ∑ ∣ ⟩=

− mmm
d

m0
1  by identifying

λ ρ
ρ= ⟨ ∣ ∣ ⟩

∑ ⟨ ∣ ∣ ⟩
mm mm

nn nn
(3)m

n

This association alone by no means guarantees that the state ρ 
really is equivalent to the target state Φ∣ ⟩ . Although the informa-
tion about the diagonal elements of ρ provides an informed guess, 
it is not enough to infer entanglement properties. In order to access 
this information, one could in principle perform costly FST. This 
requires measurements in (d +  1)2 global product bases25, which is 
equivalent to d2(d +  1)2 global filter settings. Here, we propose a 
much more efficient alternative method to obtain a lower bound on 
the Schmidt rank of ρ and on its fidelity to the target state.

Dimensionality witnesses
For the certification of the Schmidt rank of ρ we consider the fidel-
ity F(ρ, Φ) to the target state Φ∣ ⟩ , given by

∑ρ Φ Φ Φ ρ λ λ ρ= ∣ ⟩ ⟨ ∣ = ⟨ ∣ ∣ ⟩
=

−
F mm nn( , ) Tr( ) (4)

m n

d

m n
, 0

1

For any state ρ of Schmidt rank k ≤  d the fidelity of equation (4) 
is bounded by33,34

∑ρ Φ Φ λ≤ =
=

−
F B( , ) ( ) : (5)k

m

k

i
0

1
2
m

where the sum runs over the k largest Schmidt coefficients, that is, im, 
with m ∈  {0, … , d −  1} such that λ λ≥ ∀ ≤ ′

′
m mi im m

. Consequently, any 
state for which F(ρ, Φ) >  Bk(Φ) is incompatible with a Schmidt rank 
of k or less, implying an entanglement dimensionality of at least k +  1.

Fidelity bounds
The next step is hence to experimentally estimate the value of the 
fidelity F(ρ, Φ). To see how this can be done, we split the fidelity into 
two contributions, one that depends on the terms of equation (4) 
that are diagonal in the basis ∣ ⟩mn{ } m n, , which will be called F1(ρ, 
Φ), and the other that depends on the off-diagonal terms, called 
F2(ρ, Φ) (see Methods).

The contribution F1(ρ, Φ) can be calculated directly from the 
already performed measurements in the basis ∣ ⟩mn{ } m n, . However, 
exactly determining the term F2(ρ, Φ) would require a number of 
measurements that scales with the dimension. To avoid such a high 
overhead, we employ bounds for F2(ρ, Φ) that can be calculated from 
measurements in only one additional basis ∣ ⟩∼j{ } j (see Methods).

Using the previously obtained values λ{ }m m, we define the basis 
∣ ⟩ = … −
∼j{ } j d0, , 1 according to

∑
λ

ω λ∣ ⟩ =
∑

∣ ⟩
=

−∼j m1
(6)

n n m

d
jm

m
0

1

where ω =  e2πi/d and ∣ ⟩m{ } m is the standard basis. Notice that, 
although the basis vectors ∣ ⟩∼j  are normalized by construction, they 
are not necessarily orthogonal, but become orthogonal and even 
mutually unbiased with respect to ∣ ⟩m{ } m when all λm are the same. 
We hence refer to ∣ ⟩∼j{ } j as the tilted basis.
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Fig. 2 | Experimental data certifying 9-dimensional entanglement. a–c, Two-photon coincidence counts showing orbital angular momentum correlations 
in the standard LG basis ∣ ⟩ ∣ ⟩m n{ , } m n,  (a), the tilted basis ∣ ⟩ ∣ ⟩∼ĩ *j{ , } i j,  (b) and the first mutually unbiased basis ∣ ⟩ ∣ ⟩*i j{ , } i j,  (c). As seen in a, our 
generated state is not maximally entangled (measured Schmidt coefficients λm can be found in the Supplementary Information). For each set of two-basis 
measurements, we calculate a fidelity to the d!= !11 target state of ∼ ρ ΦF( , )!= !76.2!± !0.6% (LG and tilted bases) and ∼ ρ Φ+F( , )!= !74.8!± !0.4% (LG and MUB). 
Even though the fidelity bound in the tilted case (b) is higher, the Schmidt number bounds are also higher and more difficult to overcome, yielding a 
certified entanglement dimensionality of dent!= !8, slightly lower than the bound of dent!= !9 obtained in the MUB case (c).
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Due to this general non-orthogonality, the relation of equation 
(2) between the diagonal matrix elements ĩ ρ ĩ⟨ ∣ ∣ ⟩∼ ∼j j* *  and the 
coincidence counts Ñij for the local filter setting ĩ∣ ⟩∼j *  requires a 
small modification in terms of an additional normalization factor 
cλ =  λ λ ρ∑ ⟨ ∣ ∣ ⟩

λ∑( )
mn mnd

m n m n,
k k

2

2
, that is,

ĩ ρ ĩ⟨ ∣ ∣ ⟩ =
Ñ

∑ Ñ λ
∼ ∼j j c (7)* * ij

k l kl,

Apart from the inclusion of cλ (see detailed derivation in the 
Supplementary Information), measurements in the tilted 
basis are in principle not different from measurements in any  
orthonormal basis.

The terms of equation (7), along with the measurement results 
in the standard basis, allow us to bound the fidelity term F2(ρ, Φ), 
which in turn provides a lower bound ρ Φ∼F ( , ) for the fidelity F(ρ, Φ) 
that is experimentally easily accessible.

We thus immediately obtain the dimensionality witness inequality

ρ Φ ρ Φ Φ≤ ≤∼F F B( , ) ( , ) ( ) (8)k

which is satisfied by any state ρ with Schmidt rank k or less. 
Conversely, the entanglement dimensionality dent that is certifiable 
with our method is the maximal k such that ρ Φ Φ> −

∼F B( , ) ( )k 1 .
A detailed derivation of this bound along with the proofs 

of its tightness can be found in the Methods section. In the 
Supplementary Information we further present a generalization 
of the fidelity bound to multiple measurement bases, the deri-
vation of bounds for entanglement of formation that arise from 
our method, and an extension of our fidelity bound to a family of 
multipartite states.

Crucially, our witness requires only two global product bases to 
be evaluated, and is hence significantly more efficient than the d +  1 
and (d +  1)2 bases required for the exact evaluation of the fidelity, or 
even a FST, respectively. For projective filtering the overall number 
of filter settings is obtained by multiplying the number of required 
bases by d2. A comprehensive comparison of the required number 
of measurement settings is given in Table 1.

Certification of high-dimensional entanglement
We now apply our witness to certify high-dimensional OAM 
entanglement between two photons generated by Type-II spon-
taneous parametric down-conversion (SPDC) in a non-linear 
ppKTP crystal (see Fig. 1a for details). To this end, we display 
computer-programmed holograms (Fig. 1b,c) on SLMs designed 
to manipulate the phase and amplitude of incident photons35. 
In this manner, we are able to projectively measure the photons 
in any spatial mode basis, for example, the LG basis, any mutu-
ally unbiased (MUB)36 or any tilted basis (TILT) composed of 

superpositions of elements of the standard basis (equation (6)). 
Additional details of the experimental implementation, including 
information on the holograms, can be found in the Methods and 
Supplementary Information.

For local dimensions up to d =  11 (that is, for azimuthal quan-
tum numbers ℓ ∈ − …{ 5, , 5} ) we then proceed in the follow-
ing way. First, we measure the two-photon state in the LG basis 

∣ ⟩m{ } m to obtain a cross-talk matrix of coincidence counts Nmn 
(Fig. 2a), taking into account the effects of mode-dependent loss 
(see Supplementary Information). This allows us to calculate 
the density matrix elements ρ⟨ ∣ ∣ ⟩mn mn , estimate the λm, and 
nominate the target state Φ∣ ⟩ . We then use the set {λm}m to con-
struct the tilted basis ∣ ⟩∼j{ } j according to equation (6) and per-
form correlation measurements (Fig. 2b) that allow us to calculate 

ρ⟨ ∣ ∣ ⟩∼∼ ∼∼j j j j* * . From these measurements, we calculate the lower 
bound of the fidelity to the target state, for which we find high val-
ues, for example, ρ Φ∼F ( , ) =  76.2 ±  0.6% for d =  11 (data for other 
dimensions are presented in Table 2). However, in our set-up, 
the certification thresholds Bk for the tilted basis are higher than 
for the MUB (for example, B7 =  0.72 versus B7 =  0.64 for d =  11 
in tilted versus MUB, respectively). We therefore also measure 
the correlations in the first MUB ∣ ⟩j{ } j (Fig. 2c) following the 
standard MUB construction by Wootters et al.36, corresponding 
to λ = ∕ d1m  for all m in equation (6). Using these measure-
ments, we calculate lower bounds of the fidelity to the maxi-
mally entangled state, and find ρ Φ+∼F ( , ) =  74.8 ±  0.4% for d =  11, 
which is significantly above the bound of B8(Φ+) =  ∕ ≈ .8 11 0 727, 
but below B9(Φ+) =  ∕ ≈ .9 11 0 818 . We hence certify 9-dimensional 
entanglement in this way. Note that the asymmetry in the counts 
just below and above the diagonal in Fig. 2b,c corresponds to a 
slight misalignment in the experiment. Errors in the fidelity are 
calculated by propagating statistical Poissonian errors in photon-
count rates via Monte-Carlo simulation of the experiment. This 
demonstrates that our witness indeed works for efficiently certi-
fying high-dimensional entanglement. Moreover, this shows that 
although the tilted basis measurements can achieve higher fideli-
ties, one pays a price in terms of increased certification thresh-
olds, and thus an increased sensitivity to noise.

Our approach hence provides a lower bound for F(ρ, Φ) and k(ρ) 
using measurements in as few as two global product bases. Each of 
these are realized by d local filter settings on each side, totalling to 
2d2 global filter settings instead of d2(d +  1)2 for FST. For our state 
in a 11 ×  11-dimensional Hilbert space this corresponds to 242 filter 
settings, versus the 17,424 filter settings required for FST, which is a 
reduction by two orders of magnitude.

Discussion and outlook
A remarkable trait of high-dimensional entanglement is that 
measurements in two bases are enough to certify any entangled 
pure state for arbitrarily large Hilbert space dimension. We make 

Table 1 | The table shows the number of required measurements 
for optimal full state tomography (FST), optimal fidelity 
measurement [F(ρ, Φ)], and to calculate the fidelity bounds 
presented in this work FF[ ( , )]∼ ρ Φ

Number of measurements

Method FST F(ρ,Φ) ∼ ρ ΦFF( , )

Global product 
bases

(d!+ !1)2 d!+ !1 2

Local filter settings (d!+ !1)2d2 (d!+ !1)d2 2d2

The first line corresponds to the necessary number of measured global product bases (which can 
be realized with at most d!+ !1-outcome local measurements), and the second line, the necessary 
number of local filter settings (which can be realized with single-outcome local measurements)

Table 2 | Fidelities FF( , )+∼ ρ Φ  and FF( , )∼ ρ Φ  to the maximally 
entangled state and to the target state, obtained via 
measurements in two MUBs and two (M"="1) tilted bases in 
dimension d, respectively

Experimental results

d dent
∼ ρ Φ+FF( , ) ∼ ρ ΦFF( , )

3 3 91.5!± !0.4% 92.5!± !0.4%
5 5 89.9!± !0.4% 90.0!± !0.5%
7 6 84.2!± !0.5% 86.9!± !0.6%

11 9 74.8!± !0.4% 76.2!± !0.6%

The second column lists the entanglement dimensionality dent certified using ∼ ρ Φ+F ( , )2
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use of this insight to establish fidelity bounds for states produced 
under realistic laboratory conditions. Using two (or, if desirable 
more, see Supplementary Information) local basis choices, these 
bounds can be employed to certify the Schmidt number and 
entanglement of formation in a much more efficient way than 
is possible via FST or even complete measurements of the fidel-
ity. It is also interesting to note that the two measurement bases 
required for optimal fidelity certification become unbiased when-
ever the target state is maximally entangled. This procedure could 
be viewed as a trusted device analogue to self-testing37, requiring 
significantly fewer measurements and exhibiting a much greater 
noise resistance.

The strength of our method has its origin in the fact that we 
use readily available knowledge about the quantum system under 
investigation in terms of an educated guess for the Schmidt bases. 
This is close in spirit to assumptions commonly used in many 
experiments where preserved quantities in nonlinear processes 
are harnessed to create entanglement. For the case of our experi-
mental set-up, this amounted to the conservation of transverse 
momenta15. Using holograms and couplings to single-mode fibres 
essentially implements single-outcome measurements (projective 
filtering), leading to 2d2 filter settings globally. This could be fur-
ther improved by means of a mode sorter38,39, reducing the global 
measurement settings to merely two (see Table 1 for a comprehen-
sive overview) at the cost of using d-coincidence detectors. But our 
proposed method is not limited to transverse momenta and OAM. 
In energy–time-based set-ups17, conservation of energy leads to 
the frequency or time-bin basis to be the natural Schmidt basis. 
Canonically these systems even feature d-outcome measurements, 
making them ideal candidates for the application of our method. 
Indeed, the states generated in the time-bin basis are generically 
close to being maximally entangled19 and thus the tilted measure-
ment would ideally be close to MUBs. There are various proposals 
as to how mutually unbiased measurements could also be directly 
implemented as d-outcome measurements in such systems40,41. 
Finally, our method can be directly implemented using multi-path 
interferometers12 where the natural Schmidt basis is the path degree 
of freedom. Let us stress again, however, that even deviations from 
the assumed situation do not invalidate the bounds employed in 
our approach, but lead (at most) to suboptimal performance, and 
an unambiguous certification is still ensured.

To demonstrate the practical utility of our method, we have per-
formed an experiment using two photons entangled in their orbital 
angular momenta. We were able to certify 9-dimensional entangle-
ment in a 11 ×  11-dimensional Hilbert space, which is the highest 
number achieved so far without further assumptions on the under-
lying quantum state. This is achieved using only two local, unbi-
ased measurement bases (11 outcomes each), which are realized by 
242 local filters and coincidence counting. Using similar measure-
ments in the tilted bases we are able to achieve target state fidelities 
of 92.5% in 3 dimensions and 76.2% in 11 dimensions. As we have 
shown, the certification method proposed here is thus surprisingly 
robust to noise and enables straightforward and assumption-free 
entanglement characterization in realistic quantum optics experi-
ments. This further illustrates the usefulness of MUBs for the detec-
tion of entanglement32,42–47 and correlations48.

Our certification method can also be generalized to oper-
ate with more than two bases, enabling an adaptable increase in 
noise resistance when required, as discussed in the Supplementary 
Information. There we also show how our bounds can be extended 
to certify entanglement of formation. Remarkably, this approach 
can also be generalized to Greenberger–Horne–Zeilinger (GHZ)-
like multipartite states recently created using OAM27,49, making 
large multipartite states generated by the methods of ref. 50 certifi-
able in a scalable manner. We give a brief exposition of this result in 
the Supplementary Information.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0203-z.
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Methods
Derivation of the fidelity lower bound. In this section, we provide a proof for the 
fidelity bound

ρ Φ ρ Φ≥ ∼F F( , ) ( , ) (9)

that is, the right-hand side of equation (8) of the main text, where F(ρ, Φ) =  F1(ρ, 
Φ) +  F2(ρ, Φ) and ρ Φ ρ Φ ρ Φ= +∼ ∼F F F( , ) ( , ) ( , )1 2 , each split into two contributions. 
Since the first of these, given by

∑ρ Φ λ ρ= ⟨ ∣ ∣ ⟩F mm mm( , ) : (10)
m

m1
2

is the same for both F and ∼F , we hence want to concentrate on showing that ≥ ∼F F2 2
, where

∑ρ Φ λ λ ρ= ⟨ ∣ ∣ ⟩
≠

F mm nn( , ) : (11)
m n

m n2

whereas the lower bound to F2(ρ, Φ) is

∑ ∑

∑

λ
ρ λ λ ρ

γ ρ ρ

=
∑

⟨ ∣ ∣ ⟩− ⟨ ∣ ∣ ⟩

− ⟨ ′ ′∣ ∣ ′ ′⟩ ⟨ ∣ ∣ ⟩
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′ ′ ′

′ ′

=

−

=

−

≠ ≠
≠ ≠

∼∼ ∼∼

∼

∼ ( )F
d

j j j j mn mn

m n m n mn mn

: * *

(12)

m m

j

d

m n

d

m n

m m m n
n n n m

mm nn

2

2

0

1

, 0

1

,
,

where the asterisk denotes complex conjugation of the vector components with 
respect to ∣ ⟩m{ } m and the prefactor γ ′ ′

∼
mm nn  is given by

γ λ λ λ λ= − ′− + ′ ≠
′ ′

′ ′

⎛

⎝
⎜⎜⎜⎜

∼ m m n n d0 if ( ) mod 0
otherwise (13)mm nn

m n m n

as we will show in the following. Here, the quantity F1(ρ, Φ ), as well as the second 
and third terms of ∼F2 in equation (12) can be obtained directly from measurements 
in the standard basis ∣ ⟩mn{ } m n, , whereas the first term of ∼F2 is constructed from 
diagonal density matrix elements with respect to the tilted bases with elements

∑λ
ω λ∣ ⟩ =

∑
∣ ⟩

=

−∼j m1
(14)

n n m

d
jm

m
0

1

where ω =  e2πi/d. This non-orthogonal construction is motivated by the observations 
that Φ∣ ⟩  is in general non-maximally entangled and that the tilted basis 
interpolates between the measurement bases required to obtain unit fidelities 
for pure product states Φ∣ ⟩ = ∣ ⟩mn  (where the standard basis suffices) and for 
maximally entangled states Φ Φ∣ ⟩ = ∣ ⟩+  (where the tilted basis becomes unbiased 
with respect to the standard basis). The tilted basis ∣ ⟩∼j{ } j can be seen as a 
particular construction of a basis that satisfies the condition λ λ∣⟨ ∣ ⟩∣ = ∀∼m j m j,m j

2
 

with the standard basis ∣ ⟩m{ } m. Notice that the standard definition of mutually 
unbiased bases (MUBs) is recovered when λ = ∀ ii d

1 .
For the proof, we then focus on the matrix elements obtained from 

measurements with respect to the tilted basis. That is, we define the quantity

∑ ∑

∑

ρ
λ

λ λ λ λ

ω ρ
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1

2
,
,

0

1
( )

The sums over the standard basis components can then be split into several 
contributions. When m =  m′  and n =  n′ , the phases all cancel, the sum over the 
tilted basis elements has d equal contributions, and we hence have

∑
λ

λ λ ρΣ =
∑

⟨ ∣ ∣ ⟩
( )

d mn mn: (16)
k k m n

m n1 2
,

When m =  m′  but n ≠  n′  (or vice versa) one finds terms containing the sum

Since n ≠  n′ , these terms vanish. For all remaining contributions to Σ  one has 
m ≠  m′  and n ≠  n′ . These terms then again split into three sets. First, for m =  n and 
m′  =  n′  we recover the desired terms of the form

which also appear in F2(ρ, Φ ) in equation (11). The terms where m =  n  
but m′  ≠  n′  (or vice versa) again vanish due to equation (17). Finally, this  
leaves the term

∑

∑

∑

Σ
λ

λ λ λ λ

ω ρ

λ
λ λ λ λ

ρ

=
∑

× ⟨ ′ ′∣ ∣ ⟩

=
∑

× ⟨ ′ ′∣ ∣ ⟩

′

′
′ ′

′ ′

′ ′

′

′
′ ′

′ ′

′ ′

≠
≠

≠
≠

=

−
− − +

≠
≠

≠
≠

( )

( )

m n mn

c m n mn

: 1

1

Re( )

(19)

k k m m
m n
n n

n m

m n m n

j

d
j m m n n

k k m m
m n
n n

n m

m n m n

mnm n

3 2

0

1
( )

2

where we have used the abbreviation ω= ∑′ ′
′ ′− − +c :mnm n j

j m m n n( ) . In the  
last step we have replaced cmnm′n′ by its real part, since for each combination  
of values for m, n, m′ , n′  the sum contains a term where the pairs (m, n)  
and (m′ , n′ ) are exchanged. Each term in the sum is hence paired  
with another term that is its complex conjugate, and the total sum is  
hence real.

Although Σ 1 and Σ 2 are accessible via measurements in the standard basis, the 
off-diagonal matrix elements in Σ 3 cannot be obtained from measurements with 
respect to ∣ ⟩mn{ } m n, . In order to provide a useful lower bound for Σ  we therefore 
have to provide a bound for Σ 3. To this end, we can bound the real part by the 
modulus, that is,

ρ ρ
ρ

⟨ ′ ′∣ ∣ ⟩ ≤ ∣ ⟨ ′ ′∣ ∣ ⟩∣
= ∣ ∣ × ∣⟨ ′ ′∣ ∣ ⟩∣

′ ′ ′ ′

′ ′

c m n mn c m n mn
c m n mn

Re( )
(20)mnm n mnm n

mnm n

We then use the Cauchy–Schwarz inequality to bound the second factor on the 
right-hand side of (20) by writing ρ ψ ψ= ∑ ∣ ⟩ ⟨ ∣pi i i i  such that
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In equation (20), note that in the first factor, ∣ ∣′ ′cmnm n , the sum ω∑ ′ ′− − +
j

j m m n n( )  
vanishes whenever (m −  m′  −  n +  n′ ) mod d ≠  0, and equals d otherwise. Collecting 
cmnm′n′/d with λ λ λ λ′ ′m n m n  into γ ′ ′

∼
mm nn  as defined in equation (13), this allows us to 

bound the quantity Σ 3 according to
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Collecting the different contributions to Σ  we thus have
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Conversely, this means that the term F2 can be bounded by

∑Σ
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as claimed for the quantity ∼F2 in equation (12). The fidelity F(ρ, Φ ) can hence be 
bounded by measurements in only two local bases, ∣ ⟩m{ } m and ∣ ⟩∼j{ } j, for each 
party, that is, two global product bases ∣ ⟩mn{ } m n,  and ĩ∣ ⟩∼j{ * } i j, .

Tightness of the fidelity bound. In this section, we show that whenever the 
system state ρ is either equal to the (pure) target state ρ Φ Φ= ∣ ⟩ ⟨ ∣  or is a dephased 
maximally entangled state ρ p( )deph  =  Φ Φ∣ ⟩ ⟨ ∣ + ∑ ∣ ⟩ ⟨ ∣+ + −p mm mmp

d m
1 , the 

Schmidt number witness ρ Φ Φ> −
∼F B( , ) ( )k 1  is not only a sufficient, but also a 

necessary condition for Φ∣ ⟩  or ρdeph to have a Schmidt rank greater than or equal 
than k. For the state Φ∣ ⟩  this is obvious. Since the coefficients λm are determined by 
measurements in the Schmidt basis of ρ Φ Φ= ∣ ⟩ ⟨ ∣ , the fidelity bound is tight, and 
we have ρ Φ ρ Φ= =∼F F( , ) ( , ) 1 and Bk(Φ) is equal to 1 if and only if k =  d.

For dephased maximally entangled states we proceed by showing that there 
exists a Schmidt-rank k state ρdeph(p =  pk) such that F(ρdeph(pk), Φ) =  Bk(Φ) for every 
k. To this end, first note that ρdeph can be written as

∑

∑ ∑

ρ Φ Φ= ∣ ⟩ ⟨ ∣ + − ∣ ⟩ ⟨ ∣

= ∣ ⟩ ⟨ ∣ + ∣ ⟩ ⟨ ∣

+ +

≠
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d

mm mm

d
mm mm p

d
mm nn

1

1 (25)m

m m n

deph

which implies that λ = ∀ mm d
1 . That is, the corresponding target state is 

Φ Φ∣ ⟩ = ∣ ⟩+  and =Bk
k
d

. The relevant fidelity then evaluates to

ρ Φ ρ Φ= = + −+F F p d
d

( , ) ( , ) 1 ( 1) (26)deph

and ρ Φ =+F B( , ) kdeph  for = = −
−p pk

k
d

1
1
. All we need to do now is to show that 

ρdeph(pk) has a Schmidt rank no larger than k. To see this, consider the family of 
maximally entangled states in dimension k, that is,

∑Φ
α

∣ ⟩ =
∣ ∣

∣ ⟩α
α

+

∈
mm: 1

(27)
m

where α ⊂  {0, 1, … , d −  1} with cardinality α∣ ∣ = k. In dimension d, we can find ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

d
k

 
such states and consider their incoherent mixture, that is,

∑ρ Φ Φ= ∣ ⟩ ⟨ ∣
α α

α α
. . ∣ ∣=

+ +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

d
k

1
(28)k

ks t

Since each of the Φα
+ has Schmidt rank k, the convex sum ρk cannot have a 

Schmidt rank larger than k. Since there are −
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

d
k

1
1

 terms contributing to every 

nonzero diagonal matrix element, we have ρ δ⟨ ∣ ∣ ⟩ =mn mnk d mn
1 . Similarly, every 

nonvanishing off-diagonal matrix element has −
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⎟

d
k

2
2

 contributions, and we hence 
have ρ δ δ⟨ ∣ ∣ ⟩ = −

−mn ijk
k

d d mn ij
1

( 1)
 for m ≠  i. It is then easy to see that the fidelity with 

the maximally entangled state (in dimension d) is ρ Φ =+F ( , )k
k
d

. More specifically, 
comparison with equation (25) reveals that ρdeph =  ρk for = = −

−p pk
k
d

1
1
. Since 

the Schmidt rank of ρk is smaller or equal than k, we have hence shown that the 
Schmidt rank of the dephased maximally entangled state ρdeph(pk) with F(ρdeph(pk), 
Φ) =  Bk is k or less. Consequently, F(ρdeph, Φ+) >  Bk−1 is a necessary and sufficient 
condition for ρdeph to have Schmidt rank k.

Moreover, since the fidelity bound ≤∼F F is tight for ρdeph already for M =  1 
and the tilted basis is unbiased with respect to the standard basis for dephased 
maximally entangled states, we can conclude that measurements in two unbiased 
bases provide the necessary and sufficient condition ρ Φ >+

−
∼F B( , ) kdeph 1 for 

Schmidt rank k for these states.

Role of the target state. The initial designation of the target state Φ∣ ⟩ , or rather 
its Schmidt basis, helps to suitably adapt the dimensionality witness to the 
experimental situation. Although identifying the Schmidt basis from the set-up 
could in principle be seen as an assumption about the underlying state, choosing 

a basis that is far from the Schmidt basis does not invalidate our certification 
method. Since the latter is based on lower-bounding the fidelity to the target state, 
such a misidentification would simply result in a reduced performance by using 
lower bounds on the fidelity to a state that is far from the actual state. An analysis 
of how our fidelity bounds are affected by a ‘wrong’ choice of basis is provided 
in the Supplementary Information. In other words, a non-optimal guess can lead 
to what is called a type-II-error (that is., a ‘false negative’), but never to a type-I 
error (that is, a ‘false positive’). This means that a suboptimal guess of the target 
state may lead to a less than optimal value for the certified fidelity and/or Schmidt 
number. The entanglement dimensionality (Schmidt number) certified by a wrong 
choice of basis may hence be lower than the actual entanglement dimensionality 
(Schmidt number) of the underlying state ρ, but never higher. In summary, it can 
be concluded that the performance of our method may depend on the expected 
target state, but the method does not require any assumptions about the true 
system state ρ.

Although this certification method is thus independent of the 
specific circumstances in the laboratory, it can be noted that it works 
particularly well for certain types of states. For instance, whenever the 
target state matches the underlying state up to pure dephasing, that is, when 
ρ Φ Φ= ∣ ⟩ ⟨ ∣ + ∑ ∣ ⟩ ⟨ ∣−p mm mmp

d m
1 , the fidelity bound ρ Φ ρ Φ≤∼F F( , ) ( , ) is tight, 

since the last term in equation (12) vanishes in this case. Moreover, whenever these 
states are pure (p =  1) or dephased maximally entangled states (arbitrary p but 
Φ Φ∣ ⟩ = ∣ ⟩+ ) one can further show that the Schmidt number bound F(ρ,Φ) ≤  Bk(Φ) 

is also tight (see Supplementary Information for derivation), in which case we have 
ρ Φ∼F ( , ) =  ρ ΦF( , ) =  ΦB ( )dent

.
In addition, it can sometimes be helpful to select a ‘wrong’ target state on 

purpose. For example, the maximally entangled state Φ∣ ⟩ = ∑ ∣ ⟩+ mm
d m

1 , that 
is, a target state whose coefficients where chosen to be λ = ∀ mm d

1 , may at times 
offer a higher Schmidt number lower bound than a target state with coefficients λm 
taken from the measurement results in the standard basis, even though the fidelity 
bound would be lower. In the case of the maximally entangled target state, the 
tilted basis becomes an orthonormal basis that is mutually unbiased with respect 
to the standard basis and we have Φ =+B ( )k

k
d

. Since this bound is lower than for 
general values of λm, it may be easier to overcome, particularly in the presence 
of noise, and hence yield a higher certified Schmidt number. Indeed, this is the 
case in our experimental realization (see Table 2 of the main text), where higher 
fidelity bounds are attained with the tilted basis but higher Schmidt number is 
obtained using MUBs. It is important to point out again, however, that regardless 
of the choice of target state, the certified fidelity and Schmidt number will always 
be correct and never over-estimated. In practice this means that a bad choice 
of basis may lead to a worse noise resistance and it may be harder to certify any 
entanglement, but when one manages to certify it, this result can be trusted.
Experimental details. Finally, let us discuss the experimental implementation of 
our entanglement certification method in more detail. As shown in Fig. 1a of the 
main text, our source consists of a single spatial mode, continuous wave 405 nm 
diode laser (Toptica iBeam Smart 405 HP) with 140 mW of power. The laser is 
demagnified with a 3:1 telescope system of lenses and focused by a 500 mm lens 
to a spot size of 330 μ m (1/e2 beam diameter) at the ppKTP crystal. The 5-mm-
long ppKTP crystal is designed for degenerate Type-II spontaneous parametric 
downconversion (SPDC) from 405 nm to 810 nm at 25 °C, and is housed in a 
custom-built oven for this purpose. The SPDC process generates orthogonally 
polarized pairs of photons entangled in the LG basis. The photon pairs are 
recollimated by a 200 mm lens, separated by a polarizing beamsplitter (PBS), and 
incident on phase-only SLMs.

The SLMs (Holoeye PLUTO) have a parallel-aligned liquid crystal on 
silicon (LCOS) design with a dimension of 15.36 mm ×  8.64 mm, resolution 
of 1,920 ×  1,080 pixels, reflectivity of approximately 60%, and a diffraction 
efficiency of 80% at 810 nm. The photons are transformed and reflected by these 
SLMs (shown in transmission for simplicity) and coupled into SMFs with a 
coupling efficiency of approximately 50%. The SMFs carry the photons to single-
photon avalanche detectors (not shown, Excelitas SPCM-AQRH-14-FC) with a 
detection efficiency of 60% at 810 nm. The detectors are connected to a custom-
built coincidence counting logic (CC) with a coincidence-time window of 5 ns.

The SLMs and SMFs together act as projective filters for the photon spatial 
modes. The SLMs are used to display a computer-generated hologram (CGH) that 
multiplies the incident photon amplitude by an arbitrary amplitude and phase. In 
this manner, photons in a particular spatial mode (LG or superpositions thereof) 
are converted to a fundamental Gaussian mode, which then effectively couples to 
the SMF. The manipulation of both the phase and amplitude of a photon by means 
of a phase-only device such as an SLM requires the design of a class of phase-only 
CGHs that allow one to encode arbitrary scalar complex fields. Following the Type 
3 method in ref. 35, our CGH encodes the modulation of a complex field given by 
s(x, y) =  A(x, y)exp[iϕ(x, y)] into a phase-only function whose functional form 
depends explicitly on the amplitude and phase of the field s(x, y). This allows 
arbitrary complex amplitudes to be generated/measured by a phase-only device, 
albeit at the expense of additional loss. Additionally, we divide the measurement 
amplitude s(x, y) by an offset fundamental Gaussian amplitude in order to 
maximize its overlap with the SMF mode.
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A two-photon count rate of approximately 23,000 pairs s−1 (Gaussian modes) 
is measured at the detectors (with blazed gratings displayed on the SLMs), and 
singles rates of 160,000 and 173,000 counts sec−1 in the reflected and transmitted 
PBS arms, respectively. The resulting coincidence-to-singles ratios are consistent 
with the losses described above in each arm. The lossy complex amplitude 
hologram described above further reduces the two-photon Gaussian-mode count 
rate to 668 pairs sec−1. These holograms have a mode-dependent loss that varies for 
different incident modes. In the Supplementary Information, we discuss how the 
coincidence and singles rates allow us to account for this mode-dependent loss. As 
shown in Fig. 2a of the main text, the resultant state measured by these holograms 
in the standard LG basis is close to Φ λ∣ ⟩ = ∑ ∣ ⟩= mmm m0

10 , with 89% counts on the 
diagonal. The individual λm values are: λ0 =  0.255, λ1 =  0.259, λ2 =  0.292, λ3 =  0.315, 
λ4 =  0.335, λ5 =  0.349, λ6 =  0.339, λ7 =  0.316, λ8 =  0.305, λ9 =  0.272 and λ10 =  0.260. 
Note that m ∈  {0, … , 10} corresponds to LG modes with an OAM of ℓ ∈ − …{ 5, , 5}. 
The measured state is correlated in OAM, as the reflection at the PBS flips the sign 
of one photon from the initially OAM-anti-correlated state.

The probability that one CW pump photon downconverts into a  
pair of photons in our ppKTP crystal is 10−9. Although this is two orders 
of magnitude higher than β-BBO, it is still quite low. The corresponding 
probability of two pairs being produced simultaneously is then significantly 
lower at 10−18 and can be safely neglected. The rate of accidental counts becomes 
a factor when the singles rates are high and the measurement integration 
time is long. For example, in the Gaussian (brightest) modes, there are 6,675 
pairs measured in 10 seconds. The total singles are 230,438 and 249,617, 
corresponding to an accidental rate of approximately 2.9 s−1. Correcting for 
accidental coincidences in this manner increases the measured fidelities of our 
states slightly.

Data availability. The data that support the plots within this paper and  
other findings of this study are available from the corresponding author upon 
reasonable request.
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In this supplemental material, we provide detailed
proofs and additional calculations illustrating the versa-
tility of the results presented in the main text, as well as
more information on the experimental implementation.
To provide some context, let us compactly summarize
the main results:

Summary of main results

Fidelity bound: F̃

(M)(⇢,�) ≤ F (⇢,�)
Obtained from measurements inM+1 global
product bases;

Exact for dephased pure states with only
two bases (M = 1);
Free of assumptions about the state ⇢;

Exact in prime dimensions for M = d;
Also works for certain classes of multipartite
entangled states;

Schmidt number witness: F̃ (⇢,�)⇒ d

ent

Exact for all pure states;

Exact for dephased max. entangled states;

Entanglement bound: F̃ (⇢,�+)⇒ E
oF

(⇢)
Improvement w.r.t. previous bounds [1].

The basis for these results are measurements in two(M = 1) [or more (M > 1)] global product bases, one of
which — the standard basis {�mn �}

m,n

— provides ini-
tial data (a set of values {�

m

}) that is used to construct
the other (“tilted”) basis. To summarize this method:

∗
nicolai.friis@univie.ac.at

mehul.malik@univie.ac.at

marcus.huber@univie.ac.at

Adaptive strategy for certifying entangle-

ment dimensionality

(1) Identify standard basis {�mn �} and measure co-
incidences {N

mn

} to obtain {�mn �⇢ �mn �}.
(2) Calculate {�

m

} and nominate target state �� �.
(3) Construct tilted basis {� j̃ �} and measure coin-

cidences {Ñ
ij

} to obtain {� j̃j̃∗ �⇢ � j̃j̃∗ �}.
(4) Evaluate F̃ (⇢,�) and B

k=1(�), . . ., Bk=d−1(�).
The certified entanglement dimensionality is
d

ent

=max{k � F̃ (⇢,�) > B
k−1(�)}.

To be more precise, the (first) local tilted basis{� j̃ �}
j=0,...,d−1 is constructed from the local standard ba-

sis {�m �}
m=0,...,d−1 according to

� j̃ � = 1�∑
n

�

n

d−1�
m=0!

jm

�
�

m

�m � . (S.1)

To obtain the values {�
m

}, we use the following method.
As explained in the main text, local filters [e.g., an appro-
priately programmed spatial light modulator (SLM)] are
employed to allow only systems in particular states to be
detected. For a particular setting with fixed m and n cor-
responding to the global orthonormal basis {�mn �}

m,n

one then counts the coincidences N

mn

, which give an
estimate of the diagonal density matrix elements of the
underlying system state ⇢ via

�mn �⇢ �mn � = N

mn∑
i,j

N

ij

. (S.2)

These matrix elements in turn determine the values

�

m

=���� �mm �⇢ �mm �∑
n

�nn �⇢ �nn � , (S.3)

which can be interpreted as nominating a target state�� � = ∑d−1
m=0 �m �mm �. Measurements in the second
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(tilted) basis (and potential additional tilted bases) then
allow to evaluate a lower bound F̃ (⇢,�) for the fidelity
F (⇢,�) ≥ F̃ (⇢,�) to the target state, as well of a number
of threshold values B

k=1(�), . . ., Bk=d−1(�). A Schmidt-
rank of k is then certified if the fidelity bound F̃ (⇢,�)
surpasses the value B

k−1(�), given by

B

k

(�) ∶= k−1�
m=0�

2

i

m

. (S.4)

Additional information on various aspects of this
method and its implementation are given in the follow-
ing. Section S.I details how measurements in the tilted
basis can be performed. In Sec. S.II, the noise robust-
ness of our approach is discussed for the important spe-
cial case of maximally entangled target states subject to
white noise. In Sec. S.III, we discuss the generalization
of the fidelity bounds to measurements in more than two
bases. We continue by discussing some simple bounds
for the entanglement of formation in Sec. S.IV, before
showing the connection to the fidelity bounds to the max-
imally entangled state and discussing the robustness of
these quantification techniques in comparison to previous
methods in Sec. S.V. We show how the method can nat-
urally be extended to the multipartite case in Sec. S.VI.
In Sec. S.VII we analyse the e↵ects of a non-ideal choice
of the standard basis, while Sec. S.VIII shows evidence
for the mutual unbiasedness of the implemented mea-
surement bases. In Sec. S.IX, we show an experimen-
tal example of a second spatial mode basis and discuss
how mutually unbiased measurements can be readily im-
plemented in a wide range of high-dimensional quantum
systems using current technology. Finally, in Sec. S.X,
we discuss two sources of systematic error introduced by
our specific measurement devices—mode-dependent loss
and imperfect hologram measurements.

S.I. Normalization for measurements in the tilted

bases

We now discuss in more detail how the measurements
in the bases {�mn �}

m,n

and {� ĩj̃∗ �}
i,j

can be performed
by means of a post-selection procedure that we refer
to as projective filtering. As explained above, esti-
mates of the diagonal matrix elements �mn �⇢ �mn � of
⇢ w.r.t. the standard basis can be obtained from co-
incidence counting. For the standard basis, one finds∑

m,n

�mn �⇢ �mn � = 1 by construction, which is sensi-
ble, since this expression corresponds to Tr(⇢) for an or-
thonormal basis. In other words, ∑

m,n

�mn ��mn � = 1 is
a resolution of the identity.

The same cannot be said for the (generally non-
orthogonal) basis {� j̃ �}

j

. However, the projectors{�j̃��j̃�}
j

can be used to construct a valid non-
projective (d+1)-outcome positive operator-valued mea-
sure (POVM). The first d elements of this POVM corre-
spond to projectors in the tilted basis divided by a factor

of d, while the last POVM element is obtained by sub-
tracting the sum of the aforementioned elements from the
identity, which results in a positive semi-definite opera-
tor, that is, the set of POVM elements for a measurement
in a tilted basis is � 1

d

{�j̃��j̃�}
j=0,...,d−1,1 − 1

d

∑d−1
j=0 �j̃��j̃��.

By construction this is a (d + 1)-outcome measurement.
However, when measurements are performed using pro-
jective filtering, only d filter settings, corresponding to
the d projectors � j̃ �� j̃ �, need to be performed if the
measurement results of the standard basis are already
available. To see this, note that projective filtering im-
plies that instead of the probabilities p

j

= � j̃ �⇢ � j̃ � and
p̄ = Tr�(1 −∑d−1

j=0 �j̃��j̃�)⇢� = 1 −∑d−1
j=0 pj , one obtains only

the count rates N

j

= Np

j

and N̄ = Np̄, where N is the
overall number of photons such that N = N̄ +∑d−1

j=0 Nj

.
The d values N

j

alone hence do not fully determine the
desired values p

j

= N

j

�N , but the normalization factor
N can be determined from ∑d−1

j=0 Nj

together with the
measurements already performed in the standard basis{�m �}

m

, which yield ∑d−1
j=0 pj = 1

N

∑d−1
j=0 Nj

. For the two-
party scenario with measurements w.r.t. the global prod-
uct basis {� ĩj̃∗ �}

i,j

, this sum of density matrix elements
in the tilted basis is calculated as

�
i,j

� ĩj̃∗ �⇢ � ĩj̃∗ � = 1(∑
k

�

k

)2 �
m,m

′
n,n

′

�
�

m

�

n

�

m

′
�

n

′

× �m′n′ �⇢ �mn ��
i

!

i(m−m′)�
j

!

j(n−n′)

= d

2

(∑
k

�

k

)2 �
m,n

�

m

�

n

�mn �⇢ �mn � =∶ c
�

,

(S.5)

where we have defined the normalization factor c

�

as
the inverse of the overall photon number and added the
subscript � to emphasize the dependence on the initial
measurements in the standard basis. If we had naively
considered the coincidence counts Ñ

ij

in the tilted ba-
sis, and the quantity analogous to the right-hand side

of Eq. (S.2), we would have found ∑
i,j

˜

N

ij∑
k,l

˜

N

k,l

= 1, by

construction. To relate the coincidences to the matrix
elements w.r.t. to the tilted basis, we hence include the
additional normalization factor c

�

of Eq. (S.5), i.e.,

� ĩj̃∗ �⇢ � ĩj̃∗ � = c

�

˜

N

ij∑
k,l

˜

N

k,l

, (S.6)

as stated in the main text.

S.II. Noise robustness

In this section, we discuss the special case of a max-
imally entangled target state, which is particularly in-
teresting for several reasons. First, it provides a simple
theoretical testing ground to evaluate the performance
of our method in the presence of noise, as illustrated in
Fig. S.1. There, we assume ⇢ to be a mixture of ��+ �
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FIG. S.1. Noise-resistance of the fidelity bound for

high-dimensional isotropic states. The curves show the
fidelity bound F̃ (⇢

iso

(p),�+) (weighted by the dimension d)
for isotropic states ⇢

iso

(p) = p ��+���+� + 1−p
d2
1 in d × d dimen-

sions as functions of the visibility p for d = 2 (blue) to d = 10
(green) in steps of 1. The intersections of the curves with
the horizontal lines at the points �pk(d), d × F̃ (⇢iso(pk),�+)�
(colored dots), where the intersection coordinates on the ver-
tical axis are d× F̃ (⇢

iso

(pk),�+) = d×Bk(�+) = k ∈ {1, . . . ,9},
indicate that visibilities p > pk certify an entanglement dimen-
sionality of at least d

ent

= k + 1. In other words, for any p the
certified dimension is d

ent

= �d × F̃ (⇢
iso

,�+)�. For instance,
for isotropic states in local dimension d = 3 with visibility
p > pk=2(d = 3) = 10

13

(vertical dashed line), our fidelity bound
certifies Schmidt rank d

ent

= 3.

with a maximally mixed state, i.e., an isotropic state
⇢

iso

= p ��+���+� + 1−p
d

2 1, where the visibility p satisfies
0 ≤ p ≤ 1 and 1 is the identity operator in dimension
d

2. This allows us to identify the visibility thresholds for
the certification of the Schmidt ranks of maximally en-
tangled states subject to white noise. Second, the fidelity
bounds for the target state ��+ � can be used to construct
bounds on the entanglement of formation, as explained in
the Supplementary Information. Although the selection
of ��+ � as a target state may not be optimally suited for
a given experimental situation, it thus nonetheless pro-
vides an e�cient method for the direct certification of
the number of e-bits in the system. In Appendix S.V,
we show that this entanglement quantification method
outperforms previous approaches [1] in terms of detected
e-bits and noise robustness.

S.III. Improved bounds using multiple bases

Next, we will show how measurements in more than
one tilted basis can be included to improve the fidelity
bounds. To this end, first note that the choice of tilted
basis is not unique. For instance, all of the statements
made so far about the properties of the tilted basis would
remain una↵ected if additional phase factors indepen-
dent of j were to be included in the definition of � j̃ �.
That is, we have only relied on using identities such as

∑
j

!

j(m−n) = d�
mn

. For example, let us consider a fam-

ily of tilted bases {� j̃
k

�}
j,k

parameterized by an integer
k ≥ 0, such that

� j̃
k

� = 1�∑
n

�

n

d−1�
m=0!

jm+km2�
�

m

�m � . (S.7)

For k = 0 we hence recover the original tilted basis. When
the target state is a product state (and hence separable),
all vectors within any tilted basis collapse to the same
standard basis vector (up to a global phase factor), and
are hence fully contained within the standard basis. In
this case, and indeed, whenever any of the Schmidt coef-
ficients vanish identically, tilted bases are no longer com-
plete, and hence cannot technically even be considered
to be bases anymore. However, when the target state is
maximally entangled, �� � = ��+ �, we have �

n

= 1√
d

∀n,
in which case all of the tilted bases become orthonormal.
Moreover, in this case one can recognize this construction
as that of Ref. [2], i.e., for prime dimensions the choices
k = 0,1, . . . , d−1 provide a maximal set of d mutually un-
biased bases (MUBs), d + 1 if one includes the standard
basis {�m �}

m

. For non-prime dimensions, the construc-
tion still provides an MUB w.r.t. to the standard basis
for every choice of k, but the bases for di↵erent k are in
general not unbiased w.r.t to each other. We will return
to these interesting special cases in Sec. S.V.
In the more realistic scenario where �� � is not sepa-

rable but also not maximally entangled and all Schmidt
coe�cients �

m

(as estimated from initial measurements
in the standard basis) have arbitrary nonzero values, we
may construct nonorthogonal but complete tilted bases{� j̃

k

�}
j,k

according to Eq. (S.7). As for the MUBs, this
construction provides d inequivalent tilted bases for odd
prime dimensions, measurements w.r.t. which are su�-
cient for the fidelity bound to become tight, as we shall
discuss in the following. To see this, first note that the
only contribution of the additional phases !km

2

appears
in the complex coe�cient c

mnm

′
n

′ = ∑
j

!

j(m−m′−n+n′),
which we can then replace by

c

(k)
mnm

′
n

′ ∶=�
j

!

j(m−m′−n+n′)
!

k(m2−m′2−n2+n′2)
. (S.8)

Clearly, when using any single one of the bases {� j̃
k

�}
j,k

,
the modification of the constant c

mnm

′
n

′ becomes irrele-
vant again due to the modulus, i.e., �c(k)

mnm

′
n

′ � = �c(0)
mnm

′
n

′ �
for all k.
However, we may use several of the tilted bases simul-

taneously to obtain an advantage. Replacing the term

⌃ = d−1∑
j=0 � j̃j̃∗ �⇢ � j̃j̃∗ � by an average over M di↵erent tilted

bases as defined by Eq. (S.7), i.e.,

⌃→ ⌃(M) = 1

M

M−1�
k=0

d−1�
j=0
� j̃

k

j̃

∗
k

�⇢ � j̃
k

j̃

∗
k

� , (S.9)

one finds that the only a↵ected term in the bound F̃

2

for
F

2

is ⌃
3

. That is, we may replace the coe�cient �̃
mm

′
nn

′
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by the modified coe�cient

�̃

(M)
mm

′
nn

′ = �̃
mm

′
nn

′ 1

M

�M−1�
k=0

!

k(m2−m′2−n2+n′2)� , (S.10)

and define the quantity F̃

(M) ∶= F̃
1

+ F̃ (M)
2

≤ F , where

F̃

(M)
2

∶= (∑m

�

m

)2
d

⌃(M) − d−1�
m,n=0�m�n �mn �⇢ �mn �

− �
m≠m′,m≠n
n≠n′,n′≠m′

�̃

(M)
mm

′
nn

′
��m′n′ �⇢ �m′n′ � �mn �⇢ �mn �.

(S.11)

In the least favourable possible case all phases in the sum
over k are aligned and �̃(M)

mm

′
nn

′ = �̃
mm

′
nn

′ , but in general
�̃

(M)
mm

′
nn

′ ≤ �̃
mm

′
nn

′ . Consequently, the fidelity bounds
can only be improved by including measurements in more
than one tilted basis.

In fact, when the dimension d is a (non-even) prime,
we have F̃

(M′) ≥ F̃

(M) for M

′ ≥ M , and for M = d the
prefactor �̃(M = d)

mm

′
nn

′ vanishes exactly and the fidelity bound

becomes tight, i.e., F = F̃ (M = d) . In order to show this,
we need to examine the sum in Eq. (S.10). At first it is
important to realize that since the value of �̃

mm

′
nn

′ does
not depend on k, only cases for which (m −m′ − n + n′)
mod d = 0 need to be examined, otherwise �̃

mm

′
nn

′ = 0
leads to �̃(M)

mm

′
nn

′ = 0. Let us therefore prove the following
claim. For parameter choices fulfilling the conditions

m ≠m′,m ≠ n,
n ≠ n′, n′ ≠m′,(m −m′ − n + n′) mod d = 0 (S.12)

it holds that (m2 −m′2 −n2 +n′2) ≠ 0. We will prove this
claim by contradiction. In order to do so, suppose that
both of the following equalities hold

m + n′ =m′ + n mod d (S.13)

m

2 + (n′)2 = (m′)2 + n2 mod d. (S.14)

Without loss of generality suppose m > n, which also
implies m′ > n′. Let us define c ∶=m − n =m′ − n′, which
allows us to rewrite Eq. (S.14) as

m

2 + n′2 = (n′ + c)2 + (m − c)2 mod d

m

2 + n′2 = (n′)2 + 2cn′ + c2 +m2 − 2cm + c2 mod d

0 = 2c2 + 2cn′ − 2cm mod d

0 = 2c(c + n′ −m) mod d

0 = 2c(m′ −m) mod d. (S.15)

The last equality holds, if and only if 2c(m′ −m) is a
multiple of d. Since d is an odd prime, the only possibility
is that either c or (m′ −m) are multiples of d. Clearly,
since c =m − n, m > n and m,n ∈ {0, . . . , d − 1}, 0 < c < d,
and c is therefore not a multiple of d. Similarly, since m ≠

m

′ and m,m

′ ∈ {0, . . . , d−1}, −d < (m′−m) < d, therefore(m′ −m) is not a multiple of d. We hence arrive at a
contradiction with Eq. (S.15) and conclude that under
the conditions of (S.12) we have (m2−m′2−n2+n′2) ≠ 0.

Therefore, when working with M di↵erent tilted bases,∑M−1
k=0 !

k(m2−m′2−n2+n′2) is a sum of M di↵erent

1 powers
of !. We subsequently have to show that the absolute
value of this sum can be bounded to be strictly lower
than M . Moreover, the bound improves with increas-
ing M , and whenever M = d, the sum in Eq. (S.10) [and
hence also the sum in the last line of Eq. (S.11)] vanishes.
Before we turn to the more general statement for arbi-
trary M , let us briefly focus on the case M = d, where it
can be easily seen that for non-zero (m2 −m′2 −n2 +n′2)∑d−1

k=0 !k(m2−m′2−n2+n′2) = 0.
For general values M < d let us now analytically bound�∑M−1
k=0 !

kc�, where c is a non-zero integer. Naturally, the
exact value of this sum depends on the particular value
of c, but here we give a general bound. To this end,
we first argue that the worst case (the highest possible
sum) corresponds to the situation, where kc ranges over
subsequent powers of ! (i.e. c = 1). This can be seen
from the fact that powers of ! can be represented in the
complex plane as vectors lying on the unit circle with
the centre at the origin. The absolute value of the sum
of several di↵erent powers of ! can therefore be seen as
the size of the sum of their corresponding vectors. Recall
that for odd-prime dimension d, the exponent kc ranges
over M di↵erent numbers between 0 and d − 1. Now it
is not hard to see that by fixing the number of vectors
M , the worst case sum (i.e., the largest absolute value)
corresponds to the sum of the M vectors next to each
other on the complex plane, which in turn corresponds
to the subsequent powers of !. With this knowledge, we
have to bound one particular worst case sum, given by

M−1�
k=0

!

k = M−1�
k=0

e

2⇡ik

d

. (S.16)

Using a variant of the Dirichlet kernel [3], i.e.,

M−1�
k=0

e

iMx = e i(M−1)x
2

sin �Mx

2

�
sin �x

2

� (S.17)

with x = 2⇡

d

, we have

M−1�
k=0

!

k = e i(M−1)⇡
d

sin �M⇡

d

�
sin �⇡

d

� . (S.18)

1

The di↵erence of the powers results from the fact that in the mod

prime multiplicative group, every non-zero element is a generator

of the whole group. This means that since (m2 −m′2 −n2 +n′2)
is non-zero, iterating over di↵erent values of k results in di↵erent

values of the whole exponent.
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FIG. S.2. Improved fidelity bound & dimensional-

ity witness for isotropic state. The curves show the fi-
delity bound F̃ (M)(⇢

iso

(p),�+) (weighted by the local dimen-
sion d = 7) for isotropic states ⇢

iso

(p) = p ��+���+� + 1−p
d2
1

in d × d dimensions as functions of the visibility p for lo-
cal dimension d = 7 for di↵erent numbers of global product
bases, i.e., M = 1 (blue) to M = 7 (green) in steps of 1.
The intersections of the curves with the horizontal lines at
the points �p(M)

k (d), d × F̃ (M)(⇢
iso

(p(M)
k ),�+)� (colored dots),

where the intersection coordinates on the vertical axis are
d × F̃ (M)(⇢

iso

(p(M)
k ),�+) = d × Bk(�+) = k ∈ {1, . . . ,6}, in-

dicate that visibilities p > p(M)
k certify an entanglement di-

mensionality of at least d
ent

= k + 1 when M tilted bases are
used. In other words, for any p the certified dimension is
d
ent

= �d × F̃ (M)(⇢
iso

,�+)�. For instance, for isotropic states
in local dimension d = 7 our fidelity bound with one tilted
basis (M = 1) certifies Schmidt rank d

ent

= 2 for a visibility
p > p(M = 1)

k=1 (d = 7) = 43

85

(right vertical dashed line), whereas for

two tilted bases (M = 2) a visibility p > p(M = 2)
k=1 (d = 7) ≈ 0.3997

(left vertical dashed line) is enough to certify d
ent

= 2.

Taking the absolute value reveals that for any choice of
non-zero integer c we have

�M−1�
k=0

!

kc� ≤ �sin �M⇡

d

���sin �⇡
d

�� . (S.19)

After plugging this lower bound into Eq. (S.10), all (non-
zero) prefactors �̃(M)

mm

′
nn

′ become decreasing functions of
M , on the interval 1 ≤M ≤ d, which concludes the proof
that F̃ (M′) ≥ F̃ (M) for M ′ ≥M in odd prime dimensions.

For general dimension d, however, it is not the case
that F̃ (M′) ≥ F̃ (M) for M ′ ≥M , except for the case when
M = 1 (for any dimension).

An illustration of the improvement obtained by in-
cluding multiple tilted bases is given in Fig. S.2 for an
isotropic state ⇢

iso

= p ��+���+�+ 1−p
d

2 1 in dimension d = 7.
Such a state highlights the influence of white noise on the
certification method, since the isotropic state is a mix-
ture of a maximally entangled and a maximally mixed
state. We have hence shown that an improvement of the
bounds by using more than two global product bases is

possible in principle. In Sec. S.V we will further illustrate
this improvement for quantifying entanglement.

S.IV. Bounds on the entanglement of formation

In this section, we discuss a method for bounding the
entanglement of formation in bipartite systems of arbi-
trary dimension. To provide a self-contained approach,
let us first give a pedagogical review of the entangle-
ment of formation and useful bounds for it also dis-
cussed in Ref. [1], before we make use of the fidelity
bounds established thus far in Sec. S.V. To begin, recall
that the subsystems A and B of a pure bipartite state� �

AB

are entangled if and only if their reduced states
⇢

A

= Tr
B

(� �� �) and ⇢
B

= Tr
A

(� �� �) are mixed. This
fact can easily be seen from the Schmidt decomposition,
i.e., that any pure state � �

AB

∈ H
AB

= H
A

⊗H
B

may be
written as

� �
AB

= k−1�
m=0�m ��m �A ��m

�
B

(S.20)

with respect to the Schmidt bases {��
m

�
A

}
m

and{��
m

�
B

}
m

, and where k ≤min{dim(H
A

),dim(H
B

)}. The
entanglement of the state � �

AB

may therefore be quan-
tified by the mixedness 1 −Tr(⇢2

A

) of the reduced states.
More specifically, we can define the entropy of entangle-

ment E
L

via the linear entropy S

L

as

E
L

(� �) = S

L

(⇢
A

) = �2�1 −Tr(⇢2
A

)�. (S.21)

This method for entanglement quantification can be ex-
tended to mixed states via a convex-roof construction,
i.e., we define E

L

(⇢) ∶= infD(⇢)�
i

p

i

S

L

(⇢(i)
A

) , (S.22)

where the infimum is taken over the set of all pure state
decompositions of ⇢, i.e.,

D(⇢) = ���p
i

, 

i

��
i

�⇢=�
i

p

i

� 
i

�� 
i

� ,0 ≤ p
i

≤1,�
i

p

i

=1�,
(S.23)

where ⇢(i)
A

= Tr
B

�� 
i

�� 
i

��.
A simple bound on this convex roof of the linear en-

tropy was derived in Refs. [4, 5]. Defining the quantity

I(⇢) = � 2

d(d−1) �
m≠n���mm �⇢ �nn ��

−��mn �⇢ �mn ��nm �⇢ �nm ��, (S.24)

for bipartite systems of equal local dimension d, i.e.,
dim(H

A

) = dim(H
B

) = d, with bases {��
n

�
A

≡ �n �
A

} and{��
n

�
B

≡ �n �
B

}, it was shown in [4, 5] that

I(⇢) ≤ E
L

(⇢) . (S.25)
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Now, we want to see how I(⇢) can used to bound also
the entanglement of formation (EoF) [6, 7], defined as
the convex roof extension of the entropy of entanglement
when the von Neumann entropy S(⇢) = −Tr�⇢ log(⇢)� is
used instead of the linear entropy, i.e.,

E
oF

(⇢) ∶= infD(⇢)�
i

p

i

S(⇢(i)
A

) . (S.26)

To understand this connection, let us briefly expand upon
the derivation given in Ref. [1]. First, note that for pure
states � � we have

I(� �) ≤ E
L

(� �) = �2�1 −Tr(⇢2
A

)� . (S.27)

Therefore, if I(� �) ≥ 0 we can write

Tr(⇢2
A

) ≤ 1 − 1

2

I

2(� �), (S.28)

which implies that

− log�Tr(⇢2
A

)� ≥ − log�1 − 1

2

I

2(� �)� (S.29)

since logx is a monotonically increasing function. With
the additional negative sign we can recognize the left-
hand side as the Rényi 2-entropy, defined as

S

↵

(⇢) ∶= 1

1 − ↵ logTr(⇢↵) (S.30)

for ↵ = 2. For all ↵,� ∈ N and for all ⇢, the Rényi en-
tropies satisfy S

↵

(⇢) ≥ S

�

(⇢) for ↵ ≤ �. In particular,
this means that

S

1

(⇢) = lim
↵→1

S

↵

(⇢) ≥ S

2

(⇢) = − log�Tr(⇢2)� (S.31)

and consequently one has

S

1

(⇢
A

) ≥ − log�1 − 1

2

I

2(� �)�. (S.32)

For pure states, the (von Neumann) entropy of the sub-
system is equal to the EoF and we have hence obtained
the desired bound. To see that the bound also holds for
mixed states, simply note that − log(1−x2�2) is a convex
function. Similarly, the function I(⇢) is convex, since

I

1

∶= �
m≠n ��mm �⇢ �nn �� (S.33)

is convex, while

I

2

∶= �
m≠n
��mn �⇢ �mn ��nm �⇢ �nm � (S.34)

is concave, i.e., by Jensen’s inequality [8]

I

1

(�
i

p

i

⇢

i

) ≤ �
i

p

i

I

1

(⇢
i

), (S.35)

I

2

(�
i

p

i

⇢

i

) ≥ �
i

p

i

I

2

(⇢
i

), (S.36)

for 0 ≤ p
i

≤ 1 and ∑
i

p

i

= 1. This allows us to conclude
that for all states ⇢, for which I(⇢) ≥ 0 one has

E
oF

(⇢) ≥ − log�1 − 1

2

I

2(⇢)�. (S.37)

Here, it is first useful to note here that the value of
I(⇢) (in particular, whether or not I is non-negative)
for a given state depends on the bases {�m �

A

}
m

and{�n �
B

}
n

that are chosen. For instance, if both bases
are chosen to be the same single-qubit bases and
the quantum state in question is the singlet state� − � = 1√

2

��01 � − �10 ��, where �0 � and �1 � are as-

sumed to be the eigenstates of the third Pauli matrix
Z = diag{1,−1}, then I(� − �) = −1. In other words, the
bases {�m �

A

}
m

and {�n �
B

}
n

should be chosen with a spe-
cific family of states in mind. For pure states, it is most
useful to choose the Schmidt bases of the two subsystems.

Second, observe that, on the one hand, the term I

2

contains only diagonal matrix elements and hence can
practically easily be estimated using measurements in one
pair of global product bases only. That is, counting the
coincidences N

mn

in the basis setting �m �
A

�n �
B

, we can
reconstruct the desired matrix elements as �mn �⇢ �mn � =
N

mn

��∑
i,j

N

ij

�. On the other hand, to estimate the o↵-
diagonal matrix elements of the term I

1

precisely, one
would be required to reconstruct the entire density ma-
trix by way of state tomography. However, this costly
procedure can be avoided by supplementing the measure-
ments in the basis {�mn �}

m,n

by measurements in one
(or more) MUBs w.r.t. {�mn �}

m,n

to provide a lower
bound on I

2

(⇢).

S.V. Entanglement quantification using mututally

unbiased bases

Having established the usefulness of the quantity I(⇢)
for bounding the entanglement of formation, let us now
relate it to the fidelity bounds we have discussed be-
fore. Inspection of the fidelity to the maximally entan-
gled state, i.e.,

F (⇢,�+) = 1

d

�
m

�mm �⇢ �mm � + 1

d

�
m≠n �mm �⇢ �nn � ,

(S.38)

immediately lets us obtain the bound

�
m≠n ��mm �⇢ �nn �� ≥ �

m≠n �mm �⇢ �nn � (S.39)

= dF (⇢,�+) −�
m

�mm �⇢ �mm � .
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FIG. S.3. Entanglement bounds for isotropic state. (a)
The dashed and solid curves show the lower bounds for E

oF

obtained for M = 1 and ⇢
iso

(p) using the bounds from Ref. [1]
(dashed) and using the bound presented here in (S.40) (solid
curves), respectively, for dimensions d = 3 (blue) to d = 10
(green) in steps of 1 and in units of log d. It can be seen that
the newly improved bounds can certify higher entanglement
for given visibilities p. (b) The bound of Ref. [1] (orange,
dashed) is compared with the bound of (S.40) (solid curves)
for fixed dimension d = 7 and varying numbers of bases, M = 1
(blue) to M = 7 (green) in steps of 1.

Since F (⇢,�+) ≥ F̃ (M), this, in turn, implies that

I(⇢) ≥� 2

d(d−1)�d F̃ (M)(⇢,�+) −�
m

�mm �⇢ �mm �
− �

m≠n
��mn �⇢ �mn ��nm �⇢ �nm �� (S.40)

≥ � 2

d(d−1)�d⌃(M) − 1 −�
m≠n
��mn �⇢ �mn ��nm �⇢ �nm �

− �
m≠m′,m≠n
n≠n′,n′≠m′

�̃

(M)
mm

′
nn

′
��m′n′ �⇢ �m′n′ � �mn �⇢ �mn ��,

where we have inserted the fidelity bound F̃

(M) for mul-
tiple MUBs derived in Sec. S.III. The measurements per-
formed to lower-bound the entanglement dimensionality
of ⇢ may hence directly be used to also obtain a lower
bound on the entanglement of formation.

5 10 15 20
d

0.2

0.4

0.6

0.8

1.0

pcrit

pcrit
(M) for M = 1 (solid)

M = 2 (dashed)
M = 3 (dotted)1/(d+1)

pcrit
BW

FIG. S.4. Critical visibilities. The curves show the pa-
rameters p for which the entanglement of the isotropic states
in d × d dimensions become undetectable using the bound of
Ref. [1] (upper orange curve) and the bound of (S.40) for
M = 1,2,3 (blue solid, dashed, dotted curves), respectively.
The bottom purple curves indicates the value below which
⇢
iso

is separable. The irregular behaviour of the curves for
M > 1 originates from the fact that the bases we use are all
unbiased w.r.t. each other only in prime dimensions (green
dots).

We further note that the bound of (S.40) can also be
considered to be a generalization of the bounds discussed
in Ref. [1], where a similar, but strictly weaker bound
for I(⇢) is provided, corresponding to setting M = 1
and �̃(M)

mm

′
nn

′ → 1. To provide direct comparisons of our
bounds with the methods of Ref. [1], we again turn to
the example of the isotropic state ⇢

iso

= p ��+���+�+ 1−p
d

2 1,
where 0 ≤ p ≤ 1, ��+� = 1√

d

∑
n

�nn �, and 1 is the iden-

tity in dimension d

2. A comparison of the performance
of these bounds for entanglement quantification for the
assumed state ⇢

iso

is shown in Fig. S.3.

The isotropic state also provides an ideal theoretical
testing ground for the noise robustness of these bounds,
since it corresponds to mixing a maximally entangled
state with white noise and hence allows to character-
ize the robustness of the entanglement bounds against
decoherence. To this end, we compare the critical visibil-
ities p

crit

, that is, the parameters appearing in ⇢
iso

(p) for
which the di↵erent methods stop detecting entanglement.
Ideally, this could be the case for the value p

crit

= 1

d+1 ,
below which the isotropic state is separable [9]. For the

bound of Ref. [1] we find p

BW
crit

= d

2−3d+4
d

2−2d+4 , whereas our

bound from (S.40) provides p

(M)
crit

= d(d−1)+f(M)
d(d2−1)+f(M) , where

f(M) = ∑
m≠m′,m≠n
n≠n′,n′≠m′

�̃

(M)
mm

′
nn

′ . As illustrated in Fig. S.4,

the improved bounds presented here significantly improve
on the noise resistance of the bounds.
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S.VI. Multipartite entanglement certification

In this appendix, we give a brief outlook on the mul-
tipartite case. For this purpose we define a family of
generalized GHZ states for arbitrary local dimension and
arbitrary weights {�

i

}
i

as

�GHZ
�,n,d

� ∶= d−1�
i=0

�

i

� i �⊗n , (S.41)

with ∑
i

�

2

i

= 1. The GHZ-weights �

i

can be inter-
preted as generalized Schmidt coe�cients for this par-
ticular family of states and our fidelity method can be
applied in full analogy to the bipartite cases discussed
previously. As, before, we can introduce local tilted bases
for the n-partite case as

� j̃ (n) � ∶= 1�∑
k

�

2�n
k

d−1�
m=0!

jm

�

1�n
m

�m � , (S.42)

such that � j̃(n = 2) � ≡ � j̃ � coincides with our previous def-
inition for bipartite systems. We are then interested in
determining a fidelity bound F̃ (⇢,GHZ

�,n,d

) such that

F (⇢,GHZ
�,n,d

) ∶= Tr(⇢ �GHZ
�,n,d

� �GHZ
�,n,d

�)≥ F̃ (⇢,GHZ
�,n,d

) . (S.43)

Such a bound can indeed be found and, as we shall see,
it takes the form

F̃ (⇢,GHZ
�,n,d

) ∶= ��
k

�

2�n
k

�n � 0̃ (n) �⊗n⇢ � 0̃ (n) �⊗n (S.44)

− �(↵,�)∈� �↵����↵ �⇢ �↵ � �� �⇢ �� �.
where ↵ = (i

1

, . . . , i

n

) and � = (j
1

, . . . , j

n

) are multi-
indices with i

k

, j

l

∈ {0,1, . . . , d − 1}, and we have used

the notation �↵ � = � i
1

, . . . , i

n

� and �
↵

∶=∏
i

k

∈↵ �1�n
i

k

. The
sum in the second line of Eq. (S.44) runs over pairs of
multi-indices in the set �, which is given by

� ∶= {(↵,�)�↵ ∉ �
↵

∨ � ∉ �
�

}, (S.45)

and �
↵

∶= {↵ = (i, i, . . . , i)�i = 0,1, . . . , d − 1} are the sets
of multi-indices where all sub-indices i

k

are the same.
To prove the relation of Eq. (S.44), we expand the

all-zero diagonal element in the tilted basis w.r.t. the
standard basis, that is, inserting from Eq. (S.42) we write

� 0̃ (n) �⊗n ⇢ � 0̃ (n) �⊗n = ��
k

�

2�n
k

�−n�
↵,�

�

↵

�

�

�↵ �⇢ �� �
(S.46)

and observe that, just as in the bipartite case, all density
matrix elements appear. We can then use this to replace
terms in the fidelity on the left-hand side of Eq. (S.43)
i.e.,

F (⇢,GHZ
�,n,d

) =�
i,j

�

i

�

j

� i �⊗n⇢ �j �⊗n (S.47)

= ��
k

�

2�n
k

�n � 0̃ (n) �⊗n⇢ � 0̃ (n) �⊗n − �(↵,�)∈� �↵�� �↵ �⇢ �� � .

Now, we invoke the Cauchy-Schwarz inequality� �↵ �⇢ �� � � ≤ ��↵ �⇢ �↵ � �� �⇢ �� � to bound the last
term in Eq. (S.47) as we have done in the case of
bipartite states, such that we get

F (⇢,GHZ
�,n,d

) ≥ ��
k

�

2�n
k

�n � 0̃ (n) �⊗n⇢ � 0̃ (n) �⊗n
− �(↵,�)∈� �↵����↵ �⇢ �↵ � �� �⇢ �� �= F̃ (⇢,GHZ

�,n,d

) . (S.48)

Note that in the case that ⇢ = �GHZ
�,n,d

��GHZ
�,n,d

� all
the elements in the sum over (↵,�) ∈ � vanish, as only
terms � i �⊗n⇢ �j �⊗n appear and (S.43) becomes an equal-
ity. This shows that it is in principle possible to certify
a unit fidelity with a multipartite and multi-dimensional
target state for any n and d. However, using only a sin-
gle tilted basis element � 0̃ (n) � comes at the expense of
reduced noise resistance, as we have seen in the bipartite
case. Although this leaves room for improving the bound
by the inclusion of additional tilted basis elements, the
practical optimization over all potential combinations of
phases is beyond the scope of this brief outlook.

S.VII. E↵ects of a wrong choice of Schmidt basis

on the fidelity lower bounds

In this section we provide an example of how a choice
of standard basis that does not correspond exactly to the
Schmidt basis of the generated state a↵ects the value of
our fidelity lower bound F̃ (⇢,�). Our example is based
on the physically motivated situation in which there is a
misalignment between the local reference frames of each
party.
For the two-qutrit maximally entangled state ��+

3

� =
1√
3

(�00 �+ �11 �+ �22 �) we can assume without loss of gen-

erality that one side, Alice, performs the first measure-
ment in the correct Schmidt basis while the other side,
Bob, measures in a basis that is rotated w.r.t to Alice’s
measurement basis. This is due to the U ⊗U∗ invariance
of the isotropic states. Hence, let Alice measure in the
standard basis {�0 � , �1 � , �2 �} and let Bob measure in a
one-parameter rotation of a two-dimensional subspace of
Alice’s basis, namely,

� 0̄ � = cos ✓ �0 � + sin ✓ �1 � (S.49)� 1̄ � = sin ✓ �0 � − cos ✓ �1 � (S.50)� 2̄ � = �2 � . (S.51)

From the results of the measurements in the global
product basis {�mn̄ �}

m,n

, one can compute the target
state and the tilted basis for each party and complete the
procedure outlined in Fig. of the main text to obtain
a fidelity lower bound and a certified Schmidt number.
The results for this case are plotted in Fig. S.5 for this
example.
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FIG. S.5. Plot of fidelity lower bound F̃ (�+
3

,�) for the maxi-
mally entangled two-qutrit state as a function of the rotation
angle ✓ when one of the sides measures in a standard basis
that is rotated in a two-dimensional subspace w.r.t. the mea-
surement basis on the other side. The horizontal lines show
the threshold of the fidelity bound in which Schmidt numbers
k = 3 and k = 2 can be certified.

This result illustrates how a sub-optimal choice of
Schmidt basis can lead to suboptimal fidelity bounds and
certified entanglement dimensionality. Crucially, how-
ever, it does not invalidate our method as the certified
fidelity and entanglement are nonetheless valid. More-
over, one can see that, in our example, small deviations
do not cause our fidelity bound to drop drastically, on
the contrary, one can still certify maximal entanglement
dimensionality up to at least 20% rotation.

S.VIII. Classical prepare-and-measure experiment:

LG basis

Here we demonstrate a classical experiment in which
we prepare modes in the standard Laguerre-Gaussian
(LG) basis and the first mutually unbiased basis (MUB),
and then perform measurements in both bases using the
technique discussed in the Methods section. The purpose
of this experiment is to perform an unfolded, classical
version of our two-photon entanglement setup. Also re-
ferred to as the Klyshko advanced-wave picture [10], this
is equivalent to replacing the crystal with a mirror, prop-
agating light back through one of the detectors, reflecting
it at the crystal plane, and then propagating it back to
the other detector (compare Fig. S.6 (b) with the setup
figure in the main text). In this manner, we can show
that we are able to generate and measure arbitrary com-
plex amplitudes, and that our measured bases are indeed
mutually unbiased with respect to each other.

As shown in Fig. S.6 (b), modes in seven-dimensional
LG and MUB bases are generated using computer gener-
ated holograms (CGH) implemented on the SLM labelled
(g). Intensity images of these modes obtained on a CCD
camera are shown in Fig. S.6 (a). The modes generated
by SLM (g) are imaged onto SLM (m) by a 4f system
of lenses (l3, 400mm) through a pinhole to pick o↵ the

first di↵raction order of the SLM and remove zero-order
di↵raction noise. The pinhole is also where the crystal
plane would be in the Klyshko picture (dotted rectangle).
A measurement of a particular mode is performed by the
spatial-mode filter implemented by SLM (m), a single-
mode fiber (SMF), and a single-photon avalanche pho-
todiode (SPAD). The measurement holograms on SLM
(m) are scanned through modes in both LG and MUB
bases to obtain a 14×14 element matrix of counts shown
in Fig. S.6 (c). The counts are normalised such that the
total counts measured across one basis are equal for each
generated mode. As can be clearly seen, when modes
in the same basis are generated and measured, a strong
diagonal matrix is obtained, with a visibility of 94.8%
(LG) and 84.4% (MUB) — defined as the sum of diagonal
counts divided by total counts. The visibility in the LG
basis is lower than the near-unity theoretical value due to
imperfect alignment. The MUB visibility is further low-
ered due to errors introduced by the CGH method for
approximating a more complex scalar field with a phase-
only hologram, which is confirmed by simulation. When
the generation and measurement bases are di↵erent, the
data sets are seen to be mutually unbiased (flat), with
a visibility approaching 1/7=14.3% in both cases (15.6%
and 13.5%).

S.IX. Examples of MUBs in other experimental

degrees-of-freedom/platforms

The purpose of this section is to show that our entan-
glement certification technique can be readily applied to
other photonic degrees-of-freedom (DOFs), as well as to
other physical platforms such as atoms. We do this by
first demonstrating a second set of measurement bases
with our classical prepare-and-measure experiment: the
Pixel basis. Then, we discuss recent experimental ex-
amples of mutually unbiased measurements in the time-
frequency and path degrees-of-freedom. Finally, building
on recent experiment results, we show how such mea-
surements are also feasible in high-dimensional atomic
systems consisting of Cesium atoms.
First, we use the classical prepare-and-measure exper-

iment discussed in Sec. S.VIII to demonstrate a second
set of mutually unbiased bases for the photonic position-
momentum DOF. As shown in Fig. S.7 (a), the Pixel
basis is composed of nine position states, defined by nine
discrete macro-pixels. The figure shows the intensity pro-
file of the first Pixel basis state recorded on a CCD, with
the eight empty boxes indicating the positions of the re-
maining Pixel basis states. Fig. S.7 (b) shows the inten-
sity profile of the first state from the first mutually unbi-
ased basis (MUB) to the Pixel basis, constructed accord-
ing to the standard method discussed in Ref. [2]. Using
the setup from Fig. S.6 (b), every state in the Pixel and
MUB bases is generated using SLM (g) and imaged onto
the measurement SLM (m). The measurement SLM (m)
is used to display measurement holograms in both bases,
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FIG. S.6. Classical prepare-and-measure experiment: LG basis. a) CCD images of the 7-dimensional Laguerre-
Gaussian (LG) basis and first mutually unbiased basis (MUB) modes. b) The experiment consists of a strongly attenuated IR
laser incident on a spatial light modulator (SLM (g)) used for generating arbitrary spatial modes. SLM (g) is imaged onto SLM
(m), which displays measurement holograms for arbitrary spatial modes. A pinhole is used to remove zero-order di↵raction
noise from SLM (g), and is also located at the “crystal” plane in the unfolded Klyshko picture [10]. The light from SLM (m) is
coupled into a single-mode fiber (SMF), which is connected to a single-photon avalanche diode (SPAD). c) Experimental data
showing measured counts when states are prepared and measured in both bases. The data are strongly correlated when the
preparation and measurement bases are the same, and completely uncorrelated when they are not.

resulting in an 18×18 element matrix of counts shown in
Fig. S.7 (c). As can be clearly seen, when modes in the
same basis are generated and measured, a strong diago-
nal matrix is obtained, with a visibility of 96.6% (Pixel)
and 83.7% (MUB). As for the LG basis, the MUB visi-
bility is slightly lower than the Pixel basis due to errors
introduced by the CGH. When the generation and mea-
surement bases are di↵erent, the data are again seen to
be mutually unbiased (flat), with a visibility approaching
1/9=11.1% in both cases (11.1% and 11.0%).

Despite the significant di�culties in the implemen-
tation of arbitrary measurements on high-dimensional
quantum systems, measurements in specific bases (such
as MUBs) are quite common, with recent advances al-
lowing for this in several experimental platforms. Here
we briefly discuss how mutually unbiased and tilted ba-
sis measurements can be implemented in these platforms,
allowing our entanglement certification technique to be
directly applied in a wide range of future experiments.
While we have demonstrated precise control and mea-
surement over photonic spatial modes, recent experi-

ments have been performed that show similar capabilities
for other high-dimensional DOFs such as time-frequency
and path.

For example, the experiment of Kues et al. [11] demon-
strates on-chip, high-dimensional frequency-mode entan-
glement via spontaneous four-wave mixing in a micro-
ring resonator. In order to measure their entangled state,
the authors use a combination of two programmable
phase filters and an electro-optic phase modulator to
perform projective measurements corresponding to state
vectors of the form � 

proj

� = ∑d−1
k=0 ↵k

e

i�

k � k̄ + k � where
the projection amplitudes ↵

k

and the phases �
k

can be
chosen arbitrarily for a given frequency mode k̄. This
is precisely the type of transformation that would be re-
quired for a measurement in an arbitrary tilted or mu-
tually unbiased basis of frequency modes, allowing the
direct application of our method to this platform.

Another recent experiment by Karpiński et al. [12]
used an electro-optic modulator to carry out a tempo-
ral Fourier transform of heralded single-photon pulses,
while preserving their quantum coherence. This “time
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FIG. S.7. Classical prepare-and-measure experiment: 9-dimensional pixel basis. CCD images of a) the first Pixel
basis mode, and b) first mutually unbiased basis (MUB) mode. c) Experimental data showing measured counts when states
are prepared and measured in both bases. The data are strongly correlated when the preparation and measurement bases are
the same, and completely uncorrelated when they are not.

lens” applies the exact transformation required to mea-
sure temporal pulse-mode-entangled states in the mutu-
ally unbiased frequency basis. In the recent experiment
by Carolan et al. [13], the authors demonstrate exquisite
control over a rapidly reprogrammable 6-mode integrated
photonic circuit, implementing Haar random unitaries
with an extremely high fidelity. Combined with multi-
outcome measurements at the end of the linear circuit,
their system can readily be used to perform measure-
ments in a six-dimensional mutually unbiased basis of
path modes.

In the recent experiment by Anderson et al. [14], the
electron and nuclear spins of individual 133Cs atoms were
used as a test bed for implementing high-dimensional uni-
tary transformations on an atomic system. Radio fre-
quency and microwave magnetic fields were used to gen-
erate control Hamiltonians with excellent performance
even in the presence of static and dynamic perturba-
tions, allowing the implementation of unitary maps in a
16-dimensional Hilbert space with fidelities greater than
0.98. This was followed by a Stern-Gerlach measure-
ment apparatus that measured the population in the 16-
dimensional Hilbert space. Together, these unitary op-
erations and multi-outcome measurements are precisely
what is required to measure in a mutually unbiased basis
of electron and nuclear 133Cs atoms spins.

Finally, one may note that multi-qubit systems, such
as have been realized in photonic systems [15–18], super-
conducting qubits [19], or trapped ions [20], can also yield
subsystems with high local dimension for suitable bipar-
titions of groups of multiple qubits. Such platforms are
often composed of individually controllable qubits, e.g.,

for quantum computation or simulation [20], and usually
permit arbitrary (projective) single-qubit measurements,
and hence allow measurements w.r.t. mutually unbiased
or tilted bases for any bipartition. For instance, mea-
surements w.r.t. the local Pauli Z and X operators for
all qubits would be a simple realization of a MUB mea-
surement. Our methods are thus also applicable to such
systems.
The above examples clearly demonstrate the wide ap-

plicability of our entanglement certification technique to
a variety of physical systems, and highlights its potential
for significantly impacting future experiments on high-
dimensional entanglement in photonic and atomic plat-
forms, and beyond.

S.X. Systematic errors

While there are no assumptions made about the state
or how it is produced, the method introduced here intrin-
sically puts trust on the measurement devices to work
correctly. Hence, a crucial part of the experiment is an
in-depth characterization of the measurement method.
While from a physical point of view, one would expect
the crystal to predominantly produce perfectly correlated
pairs due to a conservation of angular momentum, the
real data features a significant amount of cross-talk and
noise, ultimately diminishing the certified entanglement
and dimensionality. On the other hand, non-perfect un-
biasedness of the observables could even lead to classi-
cally correlated photons to appear entangled, the most
extreme case being a measurement in two identical bases
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TABLE I: Systematic error due to

imperfect measurements

d F̃ (⇢,�+) F̃

s1

(⇢,�+) F̃

s2

(⇢,�+)
3 91.5±0.4% 98.0% 95.6%

5 89.9±0.4% 96.4% 92.3%

7 84.2±0.5% 94.6% 87.6%

11 74.8±0.4% 89.7% 80.6%

F̃ (⇢,�+) and F̃
s1/2

(⇢,�+) are experimental and sim-
ulated fidelities to the maximally entangled state ob-
tained via measurements in two MUBs in dimension
d, respectively. F̃

s1

(⇢,�+) is obtained by incorporat-
ing the e↵ects of imperfect hologram measurements
on an ideal state estimated from measurements in the
LG basis. F̃

s2

(⇢,�+) is obtained by additionally tak-
ing into account the misalignment-induced crosstalk
measured in the LG basis.

that while assumed to be unbiased, are actually the same.
Furthermore, the coincidence counts in di↵erent settings
may not correspond to the density matrix elements in
the way assumed if the detector e�ciency is di↵erent for
the di↵erent bases, which could lead to either over- or
under-estimation of correlations (and with it entangle-
ment). These are all potential systematic errors that we
want to address in this final section.

While the predominant source of crosstalk is due to im-
perfect alignment, our paradigm of state-independence
also includes the notion of reference frames (i.e. we do
not assume to have a perfect common reference frame)
and this misalignment can only decrease observed corre-
lations. In other words, alignment issues are essentially
captured by local unitary operations and can never lead
to an increase of correlations where there are none.

Upon inspecting the correspondence of coincidence
counts to density matrix elements we noticed a signifi-
cant impact of mode-dependent loss. The usual assump-
tion that coincidence counts C

ij

of N photon pairs per
unit of time in basis elements i and j respectively are
related to density matrix elements via

C

ij

= N�ij�⇢�ij� , (S.52)

implicitly assumes (1) a constant photon pair production
rate and (2) a universal coupling e�ciency that is inde-
pendent of i and j. While the measured pair production
rate fluctuations are low enough for that estimation to
be valid, we actually do expect a strong mode-dependent
loss. In the LG-basis we expect from theoretical compu-
tations that higher modes have a lower coupling e�ciency
in the single-mode fibers [21], which should lead to a sys-
tematic suppression of higher-mode coincidence counts
and with it a systematic under-estimation of entangle-
ment. The exact coupling e�ciency, however, depends

on many intricate details of the physical setup and any
theoretical computation could increase systematic errors
in unpredictable ways. In this section we thus introduce
a general method that corrects for mode-dependent loss
using only the singles and coincidences in the setup and
will find application also in many other quantum optical
setups. Denoting the singles per unit time in detector

A�B as SA�B
i

, as well as the mode dependent loss factors

as ⌘A�B
i

, we conclude that:

C

ij

= N�ij�⇢�ij�⌘A
i

⌘

B

i

(S.53)

as well as

S

A�B
i

= N�i�⇢
A�B �i�⌘A�B

i

(S.54)

Now if we define

M

ij

∶= C

ij

S

A

i

S

B

j

= 1

N

�ij�⇢�ij��i�⇢
A

�i��j�⇢
B

�j� (S.55)

we can use the fact that

�
j

M

ij

�j�⇢
B

�j� = [M �⇢
B

]
i

= 1

N

∑
j

�ij�⇢�ij��i�⇢
A

�i� = 1

N

(S.56)

This allows us to get N , as well as conclude that

�i�⇢
B

�i� =�
j

(M)−1
ij

1

N

(S.57)

Now all that is left is to insert this into the definition of
M

ij

to get

�ij�⇢�ij� = M

ij

(∑
j

(M)−1
ij

)(∑
i

(MT )−1
ij

)(∑
i

∑
j

(M)−1
ij

) (S.58)

The only assumptions remaining in this correction
method are a constant pair production rate and that the
majority of singles is generated by photon pairs. These
assumptions can also be verified using the experimen-
tal data by checking that [M �⇢

B

]−1
i

= N is indeed equally
true for all i. Using this correction method we indeed find
the expected e↵ect: higher order modes in LG basis were
significantly suppressed leading to artificially reduced co-
incidence counts. We account for this mode-dependent
loss in our data, allowing us to more accurately estimate
a target state and hence construct a more optimum tilted
basis.
A second source of systematic error is the e↵ect of im-

perfect measurements on the resulting fidelity bounds.
As shown in Sec. S.VIII, the classical (one-photon)
measurements made using our computer-generated holo-
grams (CGHs) in the LG and the MUB bases are not
perfect, with the MUB basis showing a lower visibility
than the LG basis. In the two-photon experiment, this
would manifest as additional counts appearing in the o↵-
diagonals of the data matrices shown in the main text,
which would in turn lower the measured fidelity bounds.
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In order to estimate this quantitatively, we proceed as
follows.

First, we calculate the ideal state as obtained from di-
agonal measurements in the LG basis, by setting the o↵-
diagonal (crosstalk) counts to zero and calculating the
resulting density matrix. Second, we use this state to
calculate the ideal experimental data one would obtain if
measuring in the first MUB. Next, we simulate the im-
perfect measurements in MATLAB for each input state
and hologram by multiplying the complex field ampli-
tude by the hologram amplitude, and then calculating
its overlap with a Gaussian fiber mode amplitude. The
resulting probability matrices for the LG and MUB bases
capture the resulting imperfections of the CGH measure-
ment process. This process is repeated for each dimen-
sion considered in our experiment. We find that the im-
perfections in the LG measurement are almost negligible,
while the visibility in the MUB drops as a function of di-
mension. We then calculate the e↵ect of these hologram
imperfections on the ideal two-photon experimental data
calculated above.

A key factor that results in a lowering of the measured

fidelity bound in experiment is the crosstalk due to im-
perfect alignment. We incorporate this crosstalk into our
fidelity calculation by using the LG basis data obtained in
experiment, and the MUB data obtained from the above
simulation. In this manner, both the e↵ects of imperfect
measurement and misalignments are captured in our sys-
tematic error-corrected fidelity bounds. Table I lists the
measured fidelities F̃ (⇢,�+) from experiment, the simu-
lated fidelities F̃

s1

(⇢,�+) taking into account the e↵ects
of imperfect hologram measurements, and simulated fi-
delities F̃

s2

(⇢,�+) additionally incorporating the e↵ects
of misalignment-induced crosstalk only in the LG basis
(taken from the measured data). The e↵ects of crosstalk
on the MUB measurements cannot be added in indepen-
dently of the simulated systematic error, but one can
expect that it will lower the fidelities even more, ide-
ally approaching the measured values F̃ (⇢,�+). Thus,
imperfect measurements are always seen to result in an
under-estimation of correlations, thus lowering our fideli-
ties from their ideal expected values.
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