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Molecular dynamics simulations are reported for the structural and thermodynamic properties of
submonolayer xenon adsorbed on the (111) surface of platinum for temperatures up to the (apparently
incipient) triple point and beyond. While the motion of the atoms in the surface plane is treated
with a standard two-dimensional molecular dynamics simulation, the model takes into consideration
the thermal excitation of quantum states associated with surface-normal dynamics in an attempt to
describe the apparent smoothing of the corrugation with increasing temperature. We examine the
importance of this thermal smoothing to the relative stability of several observed and proposed low-
temperature structures. Structure factor calculations are compared to experimental results in an attempt
to determine the low temperature structure of this system. These calculations provide strong evidence
that, at very low temperatures, the domain wall structure of a xenon monolayer adsorbed on a Pt(111)
substrate possesses a chaotic-like nature, exhibiting long-lived meta-stable states with pinned domain
walls, these walls having narrow widths and irregular shapes. This result is contrary to the standard
wisdom regarding this system, namely, that the very low temperature phase of this system is a striped
incommensurate phase. We present the case for further experimental investigation of this and similar
systems as possible examples of chaotic low temperature phases in two dimensions. Published by AIP
Publishing. https://doi.org/10.1063/1.5024027

I. INTRODUCTION

The physical adsorption of gas atoms (adatoms) on solid
crystalline substrates produces an interesting collection of
phase transitions in a nearly two-dimensional (2D) environ-
ment.1 These include a rich variety of structural phase transi-
tions driven by mismatches between the natural periodicities
of the adsorbed layer and the crystalline substrate.2,3 These
effects are not restricted to the lowest layer, but can be found
even in upper layers as they are subjected to the periodic field
generated by the lower ones.3–5

Of the various possible combinations of adsorbates and
adsorbents, the adsorption of noble gas atoms on well-ordered
crystalline surfaces provides an especially attractive and use-
ful set of examples for both theorists and experimentalists
interested in fundamental questions.6 There are a number of
reasons to consider these excellent examples of model sys-
tems. First, the interactions between the various noble gas
atoms in a vacuum are simple and well understood7 with the
modifications to these interactions due to the adsorption of the
atoms on certain surfaces being reasonably well modeled.8

Second, there is a well-developed approach to the interaction
of these atoms with the crystalline surfaces9 with the val-
ues of the interaction parameters (for many specific systems)
being reasonably well determined.10 Therefore, there is the
opportunity to make quantitative comparisons between theory
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and experiment with some confidence, more than may be justi-
fied for many other adsorbate-adsorbent combinations (where
the modeling is not on as firm a foundation and the systems
are not as well characterized).11–13

The adsorption of a xenon adatom on the (111) surface
of platinum (Xe/Pt) is one of the more interesting cases of
physical adsorption.14–16 Unlike many of the cases involving
the physical adsorption of noble gas atoms on crystalline sub-
strates, the sites for adsorption are directly “over” the Pt surface
atoms and not at the hollow positions,16,17 the latter being the
expected situation for dielectric surfaces and confirmed for
Xe on the basal plane surface of graphite (Xe/Gr). Perhaps
related to this, the corrugation along the surface plane is much
larger than it is for many other cases of the adsorption of noble
gases.18 This strong bonding of the xenon adatom to the plat-
inum surface is associated with a significant redistribution of
the electron density in both the adatom and the platinum sur-
face atoms, which gives this system some characteristics of
chemisorption.19

The strong corrugation and dilated lattice of Xe/Pt sug-
gests an interesting question: Is there anything unusual about
the structure of this system at very low temperatures? In
chemisorbed systems, there exist examples exhibiting chaotic
structures at very low temperatures.20 Paradoxically, at higher
temperatures, such systems relax to form a more regular,
ordered structure. Similar behavior has been seen in some mag-
netic systems21 and in systems with charge-density waves.22 In
all these cases, the resulting chaotic structure can be attributed
to pinned domain walls which lock down the structure with a
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certain degree of randomness in the placement of these walls.22

In adsorbed systems, this chaotic behavior relies on the forces
of the substrate lattice acting on the domain walls (the Peierls
pinning force)21–27 being comparable to or stronger than the
interactions between these domain walls.22 This same physics
appears to be important to a related problem, the develop-
ment of friction in monolayer patches sliding across periodic
substrates.28–30

Here we investigate whether similar chaotic behavior
at low-temperatures can be present in the physical adsorp-
tion case of Xe/Pt. In order to do so, we perform molecular
dynamics (MD) simulations using a hybrid approach, com-
bining a classical treatment of the dynamics along the sur-
face with a quantum treatment of the dynamics perpendicular
to that surface. We refer to this as a quasi-two-dimensional
(Q2D) treatment, justifying this treatment based upon the
very different nature of the variation in the surface interac-
tion along the surface compared to the variation perpendicular
to that surface. Our model is constructed using a combina-
tion of the Barker-Rettner (BR) model18 for Xe/Pt with a
Xe–Xe “Hartree-Fock-Dispersion” (HFD) interaction,7 mod-
ified by the McLachlan interaction for Xe/Pt.31 The largest
case study reported here approaches the size of some experi-
mental systems but is smaller than the experimental best-case
scenario.32,33

We provide evidence of irregular, extremely narrow
domain walls for the low-temperature Xe/Pt system. These
walls tend to zigzag in a rather haphazard (and perhaps
“chaotic”) fashion and do not appear to relax as the run is
extended in time, nor when the temperature is raised. This
behavior is consistent with these domain walls being pinned,
at low temperature, by the Peierls force and is in agree-
ment with early preliminary calculations.34 We will label such
structures as chaotic, although we cannot show that they fit
any strict definition of such a state. We will use the phrase
“disordered state” to refer to the phase above the melting
transition.35

We also report other structural and thermodynamic anal-
yses for constrained (the xenon monolayer uniformly fills the
entire simulation cell) and unconstrained (a xenon patch in the
center of the simulation cell) system geometries. This includes
calculations of substrate corrugation parameters, determina-
tion of the ground state phase, and evidence of meta-stability
for the low temperature phases. The effects of size dependence
are made explicit by the calculation of both  0 (the hexatic
order parameter)36 and 6 (the net-domain-phase order param-
eter)35 as functions of the temperature and size of the system.
The effects of the rotation of the monolayer with respect to the
substrate are also examined. Some of these results are to be
found in the supplementary material.

Our calculations of the static structure factor allow for
comparisons between our simulations and the known exper-
imental results. There is a claim, based upon helium atom
scattering (HAS) experiments,37 that the very low temperature
phase of Xe/Pt is a striped incommensurate (SIC) phase. This
has become the conventional wisdom for this system.2,38 The
principle experimental evidence for this striped phase involves
an analysis of the static structure factor, comparing the hexag-
onal domain wall structure to that of the striped phase.32,39–41

However, it does appear that this analysis did not consider the
possibility of a chaotic (i.e., disorganized) domain structure
that is made evident in our simulations and, as such, makes no
prediction about the existence of such a state.

We show that chaotic-like structures can exist as meta-
stable (long-lived) states in Xe/Pt. Furthermore, the resulting
structures can mimic the experimental results used as evidence
for the striped phase. In addition, some aspects of the exper-
imental results seem at odds with the structure factor for the
meta-stable striped phase reported here. Some results of our
simulations have been reported in Ref. 35; this article is both
a follow-up to and a completion of that work.

II. MODEL FOR Xe ADSORBED ON Pt(111)

Much of the behavior seen in the simulations of this sys-
tem is driven by the strong corrugation and the dilated lattice of
Xe/Pt. The minimum barrier to translation from one adsorption
site to the next is roughly 275 K, whereas the minimum in the
effective interaction between xenon atoms is about 238 K.42 By
contrast, the minimum barrier to translation for Xe/Gr is about
50 K, while the Xe–Xe interaction is nearly unchanged.36,43

In addition, the Xe–Xe spacing for the
p

3 ⇥
p

3 R 30� (
p

3)
phase of Xe/Pt is 4.80 Å which is significantly larger than the
position of the minimum in the Xe-Xe interaction (4.37 Å). It
would seem that this particular combination of a large corruga-
tion and a dilated

p
3 lattice is what leads to a replacement of

a normal triple-point transition with an order-disorder tran-
sition (an incipient triple-point).35 We did not explore the
boundaries of the parameter space that would generate this
behavior.

The literature for classical simulations of the Xe/Pt mono-
layer, both Molecular Dynamics (MD) and Monte Carlo (MC),
is quite sparse. There are some early MD simulations of small
systems,44–48 but no MC work to speak of. There is an exten-
sive body of work (by Bruch and Gottlieb) on the stability
of various possible structures that might exist in this sort of
system (using a harmonic lattice dynamics approach). In par-
ticular, there is a direct application of their ideas to the Xe/Pt
system,49–51 Unfortunately, some of these early calculations
used older (and less realistic) forms for the Xe–Xe interactions
and/or simplistic models for the Xe–Pt interactions. However,
the stability of the various possible structures for this system
has been shown to be sensitive to relatively small changes in
these interactions.35,48,49

A model that has been successful in describing the inter-
action of a xenon atom with the platinum (111) surface is that
of Barker and Rettner (BR),18 a semi-empirical model that fits
a significant collection of experimental data. Only a few of the
early calculations for Xe/Pt used the BR model for this interac-
tion, and more importantly, these calculations did not directly
examine the effects of thermal excitation perpendicular to the
surface on the effective corrugation of the system. This motion
has an important effect on the thermal smoothing of the corru-
gation and thus on the thermal properties of the monolayer.35

Furthermore, when the dynamics of this and other adsorbed
systems in the surface-normal direction has been treated, it
has typically been done by using a purely classical treatment
of that motion.48,52–55
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The problem with a purely classical approach to the
surface-normal dynamics is that even when the surface-parallel
motion is well treated by classical dynamics, the same cannot
be said of the surface-normal dynamics. This is due to the
narrowness of the potential energy well in the surface-normal
direction and the corresponding large excitation energies of
the adatom. The corresponding thermal motion has an impor-
tant influence on the effective corrugation and thus on the
predictions of stable structures and phase transitions in this
system.27,35,48 In the following, we describe how our model is
constructed to overcome these issues.

A. Q2D approach

The adatom coordinates along the surface plane are
(x, y) (denoted by r), while the coordinate in the surface-normal
direction is z. We start with a quantum description of the sys-
tem, approximating the exact wave function by a set of product
wave functions having the form56

 (r1, z1, r2, z2, . . .) =  k(r1, r2, . . .) ⇥  ?(z1, z2, . . .). (1)

More to the point, we consider the Hilbert space of all such
functions, assuming appropriate orthogonality and complete-
ness conditions for the set. It must be noted that, in the end, we
will approximate the dynamics of the surface parallel terms
using a classical MD simulation but will retain a quantum
description of the surface-normal dynamics as noted in the
previous paragraph.

Following Ref. 56, it is convenient to consider three sub-
sets of contributions to the total energy of the system. These
three energy contributions are denoted by Ez, Exy, and Exyz
(each on a per adatom basis). The first contribution, Ez, is the
kinetic energy associated with the z-direction plus the later-
ally averaged substrate interaction U0(z). This term depends
only on the  ? factor, and it is the thermal behavior of this
factor that is primarily responsible for the temperature depen-
dence of the substrate corrugation. The second contribution,
Exy, is the remaining kinetic energy terms plus the interaction
between the xenon adatoms. Strictly speaking, this interaction
term depends upon both the r and z variations of the wave
function. However, it is a very good approximation to treat
this as dependent only on the k factor because of the narrow-
ness of the  ? functions.56 The third and final term consists
of the remaining contributions to the Xe/Pt interaction, that
is, the non-zero G (platinum reciprocal lattice vectors) terms
in a Fourier expansion of the BR interaction, projected onto
the r plane as described below and in the supplementary mate-
rial. This term, which determines the effective corrugation,
depends on both the  k and the  ? factors in  . In this work,
as in Ref. 56,  ? is written as a product of single-particle
Gaussians, effectively treating the monolayer vibrational mode
polarized in the surface-normal direction as a flat mode
with no variation in frequency across the two-dimensional
Brillouin zone.42,56 This has been shown to be a good
approximation.42

This Q2D approach involves an explicit assumption that
the adatom finds the optimum z-position as it moves along
the surface. This means that there is an implicit assumption
being made about the coupling of the motion in z to that in r.
Given this, there are a number of avenues to the projection of

the 3D potential energy of the BR model into the plane of r,
some purely classical in approach and some quantum in nature.
The quantum projections build upon the classical projections
by averaging various expressions of the classical projections
over the zero-point (and thermal) motion of the adatom in
the z-direction. That is, a quantum projection corresponding
to any particular classical one replaces the potential energies
(and their derivatives with respect to the z-displacement) with
the appropriate quantum thermal averaging using the Self-
Consistent Phonon (SCP) Gaussian distributions as specified
in Refs. 56 and 57. This Q2D approach results in a modi-
fied form of the 3D Steele expansion of the potential energy
of an atom due to the surface of a crystalline substrate,9,58

using quantum thermal averaging to project the 3D potential
energy into the plane of r. This effective potential energy,
denoted by Ũ(r), can be written as a Fourier series in the
form

Ũ(r) =
X

G

ŨG exp(iG · r), (2)

where G is a reciprocal lattice vector of the two-dimensional
surface lattice and the effective, Q2D Fourier coefficients ŨG
depend upon temperature as a result of the quantum thermal
averaging of the xenon dynamics in the surface-normal direc-
tion (see the Appendix for the reciprocal lattice naming and
indexing conventions used).

Our Q2D approach uses the quantum states that describe
the  ? factor to calculate the Q2D Fourier coefficients that
describe the variation of the substrate corrugation as a func-
tion of r. The details of how this is done are described in the
supplementary material which describes two quantum-based
methods and three classical approximations.

There is an important caveat in this approach, and it is
associated with the mixing of a classical treatment of the xy-
motion with a quantum treatment of the z-motion. It is obvious
how to deal with both the Ez and the Exy terms since the first
depends only on z (quantum treatment) and the second depends
only on r (classical treatment). However, the Exyz term depends
upon both, so there is some ambiguity about how to prop-
erly treat this term because the effective Fourier coefficients
defined by this term can reasonably be averaged over both
the r and the z motions.56 The decision was to match the MD
and SCP energies (at zero temperature) as closely as possi-
ble by following the procedure in Ref. 56, even though this
might overstate the effects of quantum and thermal smoothing
at finite temperatures. On the other hand, this approach does
come close to aligning the adatom-substrate classical poten-
tial energy with the corresponding SCP potential energy, even
at finite temperatures. This approach can be interpreted as an
approximate wave packet calculation. The approximations are
1. The replacement of the quantum thermal average of the
Fourier term with a cumulant expansion as done in Ref. 59;
2. the use of constants for the second-order cumulants of the
Gaussian distribution; and 3. using a separate SCP treatment
of the

p
3 phase to determine these cumulants.42 Additional

details are to be found in the supplementary material.

B. Xenon-xenon interaction

The interaction between two isolated xenon atoms is taken
to be the HFD-B2 interaction on p. 177 of Ref. 60, which

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
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is a “Hartree-Fock-Dispersion” interaction.7 This interaction
does an excellent job of describing the various features of the
xenon-xenon pair interaction in a vacuum. However, since
the Xe atoms are adsorbed on a surface, there is a modi-
fication of this pair interaction generated by the dielectric
properties of this surface. Thus, the HFD-B2 interaction is
modified by adding a McLachlan interaction31 with the param-
eters given by Bruch for the Pt(111) surface.61 This model
(HFD-B2+McLachlan) has been used successfully in Ref. 42
for a lattice dynamics analysis of this system and in Ref. 61 as
part of the analysis of HAS experiments. In addition, as was
the case in Ref. 42, the effects of any induced xenon dipole
as well as three-body terms are ignored. Details, justification,
and values of relevant parameters are given in Ref. 42 as is
the justification for ignoring any dipole-dipole interactions.
The parameter values in Ref. 42 are based on the work in
Ref. 61.

C. Xenon-platinum interaction

The position of the preferred adsorption site, which is over
the surface Pt atom, has an important effect on the stability of
the various phases of Xe/Pt.2,18,49,51,62–64 We choose the BR
model to capture this aspect of the Xe/Pt system, as well as
other important physical characteristics.18 Furthermore, it is
considered to be one of the more successful interaction mod-
els for this system, with much to recommend it.1,2 It has been
used in a successful treatment of the lattice vibrations for this
system,42,61,65 and the region of the potential well that is most
important to lattice dynamics calculations has a similar impor-
tance here. The details of the implementation of this interaction
model, including the parameters used for these calculations,
are identical to those used in the lattice dynamics calculations
of Ref. 42.

D. Molecular dynamics simulations

The simulations presented here are standard molecular
dynamics simulations in 2D (fixed particle number, area, and
total energy) with the substrate potential energy given by
Eq. (2). The simulations are carried out using scaled equations
with a length scale of 4.3656 Å, an energy scale of 282.8 K,
and a time scale of 3.262 ps. The technical details of these
simulations are found in the supplementary material. We have
carried out a series of simulations for different sets of these
Fourier coefficients, using a range of coefficients which should
bracket the most likely values both at low temperatures and at
high temperatures. It is our expectation that we have a bracket
around the most likely behavior of the system for the range of
temperatures of interest. Details and supporting arguments are
found in Sec. III A and in the supplementary material.

We refer to the selections of different projections and sys-
tem sizes as separate case studies, each being tagged using a
notation that consists of two strings separated by a colon. The
first string specifies the corrugation model for Xe/Pt and the
second one specifies the size of the system. An example is the
case study U25:65 K, where the U25 refers to a Fourier expan-
sion with a single independent amplitude (U (10) = 25 K) and
the 65 K refers to the system having 65 536 particles in the
box. A BR for the first string denotes the Barker-Rettner inter-
action as in cases 1 and 2 of Table I. Furthermore, if the first

TABLE I. Parameters that define typical case studies discussed in this work.
All energy values are in kelvin.

Case study Substrate Projection Size (K) U(10)

BR:65 Ka Pt(111) BR 65 35.6
BR-H:20 Kb Pt(111) BR-H 20 35.6
U25-H:20 Kb Pt(111) U25-H 20 25.0

aConstrained geometry with 65 536 adatoms.
bUnconstrained geometry with 20 064 adatoms.

string is terminated by a “-H,” as in BR-H, then that infers the
case study is for an unconstrained geometry (hexagonal shaped
patch). A “-U,” as in BR-U, denotes an initial uniaxial config-
uration (striped phase) which was either unconstrained (i.e.,
rectangular patch for the 20 K size) or a constrained geometry
(i.e., for the 65 K size). If there is no such designation, then the
simulation is for a constrained geometry with the initial lattice
being either hexagonal or centered-rectangular. The number
density of the

p
3 structure, denoted by ⇢0 = 0.050 16 Å 2, is

used to scale the density in various figures and tables.

III. RESULTS

The results of our simulations are organized as follows. In
Sec. III A, we report and discuss the calculation of the param-
eters of the substrate corrugation. In Sec. III B, we define
the different initialization phases that were studied, followed
by an analysis of the ground state structure for constrained
geometries in Sec. III B 1 and for unconstrained geometries in
Sec. III B 2. In Sec. III B 3, we report calculations and analy-
sis of the structure factor of the different case studies which is
the figure of merit for the comparison to experimental results,
reported in Sec. IV. Additional explanations, results, compar-
isons, and discussion are to be found in the supplementary
material such as the details of the calculation of the corrugation
that is the basis for the conclusions of Ref. 35.

A. Substrate corrugation

The descriptions and the corresponding Fourier coeffi-
cients used for the case studies examined here and in Ref. 35
are given in Tables I and II. The naming and indexing con-
ventions used for the reciprocal lattices are described in the
Appendix. The details of these calculations are to be found
in the supplementary material. The origin (or zero) of the 2D
energy calculation for a given case study is the correspond-
ing value of Ez. These values are given in Table III for three
temperatures, along with the minimum value of the laterally
averaged substrate potential energy U0 and the correspond-
ing values of zopt , the optimum value of z. As described in

TABLE II. The Fourier coefficients used in these MD calculations. All values
are in kelvin.

Projection U(10) U(11) U(20)

BRa 35.64 0.39 0.48
UNb N.00 . . . . . .

aCalculated using the classical perturbation approach.
bN 2 {20, 25, 30, 35}.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
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TABLE III. Parameters for the projection of the BR model onto the surface
plane. The minimum in the laterally averaged potential well is U0, the 1D
total energy is Ez (includes SCP zero-point and thermal energies), and the
corresponding optimum z-position for the laterally averaged substrate poten-
tial energy is zopt . All energies are in units of 103 K and all distances are
in Å.

Approach U0 Ez zopt
a

Classical 2.746 2.746 3.43
Quantumb 2.738 2.730 3.44
Quantumc 2.715 2.684 3.48
Quantumd 2.691 2.636 3.52

aOptimized using only the U0 term.
bT = 0.
cT = 60.
dT = 110 K.

Sec. II A, the quantum optimization uses SCP averaging, thus
minimizing the free energy contribution associated with the
z-motion.

For comparisons with experiment, we show the binding
energy ✏0, the isosteric heat qst , and the optimum z-position zopt
for the BR model as well as corresponding experimental val-
ues. These results are found in Table IV. The relations between
qst and the theoretical ✏0 are explained in the supplementary
material.

The theoretical and experimental values of zopt agree very
well, while the corresponding values of qst differ by about 5%–
15%. The calculated values of the z-wise vibrational amplitude
of the xenon motion for the

p
3 phase at 110 K are in excel-

lent agreement with experiment, with theory giving 0.16 Å42,66

and experiment giving 0.17 Å.16 In all, the agreement between
the BR model results and the experimental results is both
respectable and satisfactory.

A comparison of the results for the calculation of the
finite G Fourier coefficients, using the classical approach from
Sec. II A and the supplementary material, is displayed in
Table V. The first method produces a good estimate of U (10),
quite compatible with that of the second method. The second
method produces values of U (11) and U (20) that are rather small,
but perhaps not completely negligible. The third method has a
slightly different set of UG, but an overall corrugation that is
not that different than the other two.

TABLE IV. Theoretical and experimental values for the binding energy ✏0,
the isosteric heat of adsorption qst , and the equilibrium separation of the
isolated xenon atom from the platinum surface zopt . The theoretical values
are obtained by using up to three independent UG coefficients with the SCP
approximation for the z-wise single particle dynamics. All energies are in units
of 103 K and all distances are in Å.

Source ✏0 qst zopt

Theorya 2.67 2.79 3.50
Theoryb 2.70 2.90 3.41
Kernc . . . 3.21–3.31 . . .

Diehld . . . 3.02–3.25 3.40

aThis work: qst for a 2D ideal gas using U0 and T = 80 K.
bThis work: qst for a 2D lattice gas of 3D-Oscillators at T = 70 K.
cReference 37: T � 70 K and coverage ⇥  0.03.
dReference 16: T = 110 K.

TABLE V. The Fourier coefficients calculated using the classical projections
described in the supplementary material. All values are in kelvin.

Projection U(10) U(11) U(20)

Method 1 34.16 . . . . . .

Method 2 33.37 0.80 0.54
Method 3 35.64 0.39 0.48

Comparisons using the corresponding quantum projec-
tions are displayed in Table VI. At zero kelvin, there is a small
reduction in the magnitude of the classical value of the Fourier
coefficient for Ũ(10) due to quantum effects. There are corre-
sponding small changes in the (absolute) values of the others.
At 110 K, the reduction in U (10) is significantly larger but still
with small values for the others. Given these results, it would
be reasonable to use a range of 35.0 K to 24.0 K as the
appropriate one for U (10) values in the temperature range from
zero to a bit over 110 K. However, this assumes that the adatom
is able to maintain the optimal distance from the surface, even
at the highest temperatures, and also assumes that there are
no effects generated by the thermal excitation of the Pt surface
itself (see the supplementary material). Without a direct calcu-
lation of these effects, we can only guess how important these
might be. However, such a calculation would go far beyond
the goals of this work. Instead, we have simply used an arbi-
trary lowering of the corrugation, using a U (10) of 20.0 K as a
corrugation lower bound.35 This approaches the smallest cor-
rugation that is reasonable, based upon the results above and
an observed

p
3 phase that is stable in the temperature range

from 60 K through over 110 K. Lowering the corrugation too
much destabilizes the

p
3 phase over much of that temperature

range. Our lower bound preserves this stability, but it does
represent a significant lowering of the corrugation. In a cou-
ple of special test cases, a U (10) of 15.0 K was also used,
but nothing differed in any interesting way. These calculations
and the values found in Tables V and VI were the ones used in
Ref. 35.

Finally, calculations were carried out comparing theo-
retical and experimental root-mean-square (RMS) vibrational
amplitudes of the xenon atoms in an attempt to better con-
strain the corrugation. However, the results were not useful in
improving our estimate of this corrugation. These calculations
and the corresponding results are described in the supplemen-
tary material. Some additional consequences of this smoothing

TABLE VI. The Fourier coefficients calculated using the quantum projec-
tions described in the supplementary material. The calculations were carried
out for temperatures of 0, 60, and 110 K. All values are in kelvin.

Projection U(10) U(11) U(20)

Method 1a 32.7 . . . . . .

Method 2a 31.9 0.8 0.6
Method 1b 29.01 . . . . . .

Method 2b 27.49 0.94 0.87
Method 1c 26.08 . . . . . .

Method 2c 23.85 1.18 0.83

aCalculated at 0 K.
bCalculated at 60 K.
cCalculated at 110 K.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
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of the corrugation with increasing temperature are to be found
in Ref. 35. As shown in that paper, reductions in the corruga-
tion are important to the understanding of the phase transitions
in the Xe/Pt system.

B. Molecular dynamics

The implementation of the basic MD simulation is out-
lined in the supplementary material and closely follows
Refs. 36 and 43. Using these simulations along with the free
energy analysis as discussed in the supplementary material,
we examine the stability, structure, and thermal behavior of
the
p

3 phase, the striped incommensurate (SIC) phase, and the
hexagonal incommensurate (HIC) initializations. Both aligned
(AIC) and rotated (RIC) HIC structures are examined. In addi-
tion, the stability of structures having irregular and apparently
pinned domain walls are examined and compared to the oth-
ers. These “chaotic” structures will be referred to as “chaotic
hexagonal” and “chaotic striped,” even though it is not clear if
they satisfy the strict definitions of a chaotic state. We examine
these structures by initializing the system in these configu-
rations and then following the simulations out to apparent
thermal equilibrium. When possible, free energy comparisons
are made between the various structures to determine the
stable phase (this cannot be done for the constrained geome-
tries). Some initializations into these structures produce stable
(or meta-stable) disordered (chaotic) domain-wall structures.
Comparisons of the details of this work to those of Refs. 36
and 43 are described in the supplementary material. In addi-
tion to the thermodynamic functions calculated in Ref. 36,
calculations were carried out for the specific heat at constant
area and the two order parameters:  6 and  0. The definitions
and thermal behavior of these two order parameters are to be
found in Refs. 35 and 36. Other details of the thermodynamic
calculations as well as corresponding results are to be found
in that same reference. Further details follow here and in the
supplementary material.

1. Constrained geometry

Our MD simulations indicate that the ground state of the
BR model is the

p
3 state. Furthermore, at finite misfits, the

HIC phase is the stable phase. However, for small misfits, the
SIC phase will strongly compete with the HIC phase and have
nearly the same free energy (see the supplementary material
for details). If the low temperature corrugation is smoother
than about U (10) ⇡ 30 K (the exact value dependent upon
the importance of quantum effects), the IC phase becomes
the stable low temperature phase and the ground state of the
system. It is not unreasonable to speculate that, depending
upon the actual smoothing due to quantum and thermal effects
(and corrections to the BR model), it might be possible for this
system to have a

p
3 ground state with significant competition

from a SIC phase, a stable IC phase at higher temperatures (but
less than about 60 K), and then a return to a stable

p
3 phase

at roughly that temperature.
If the actual corrugation is well below the values above,

but still stronger than about U (10) ⇡ 15 K, the system
would evolve from an IC low temperature phase to the

p
3

phase as the temperature increases. However, the tempera-
ture range of stability for the

p
3 phase is reduced as the

corrugation decreases. For corrugations much lower than this
U (10) ⇡ 15 K lower limit, the system does not enter the

p
3

phase before the disordering temperature but rather remains in
the IC phase until melting. Preliminary calculations of quan-
tum corrections do not appear to alter this conclusion in any
significant manner (the calculations indicating that the AIC
and SIC states have nearly identical free energies at small
misfits).66

2. Unconstrained geometry

Most simulations for the unconstrained geometry were
carried out for a system size of 20 K. The thermodynamic
behavior of the unconstrained geometry, in the (average) den-
sity range of 0.14–0.67 times ⇢0, is not very sensitive to
variations in that density (provided the system is an isolated,
single patch). Most of the data were taken with an aver-
age density of roughly 0.45–0.55 on this scale, but some
simulations at the highest and lowest densities were used
so that the sensitivity of the results to changes in the aver-
age density could be examined. Nothing of significance was
found.

The thermodynamic stability analyses (see the supple-
mentary material) of the various meta-stable structures in this
system demonstrates that the

p
3 phase is the stable phase of

both the BR-H and U30-H projections at low temperatures
but that the SIC phase has nearly the same energy at low
temperatures. Thus, while the

p
3 phase is the expected low

temperature phase of the BR model for Xe/Pt, it will have
strong competition from the SIC phase. This may be what
drives the system into the observed “chaotic” domain struc-
ture that is observed in the simulations. Furthermore, even
though simulations using the smaller corrugations in Table II
show that the stable phase at very low temperatures would
be an IC phase, the stable phase at higher temperatures, even
for these smaller corrugations, is still the

p
3 phase. Using

the corrugation values shown in Table II, the stable phase at
temperatures just below the melting temperature does appear
to be the

p
3 phase. The effects of quantum behavior and

the implications for the determination of the stable state will
be addressed in a future publication.66 However, preliminary
calculations indicate that the basic conclusions of the MD
stability analysis shown here are not significantly altered by
quantum effects as calculated by a SCP type analysis.56,66

Finally, the transition from
p

3 ground state to IC ground state
occurs at values of U (10) between 30 and 25 K, the actual
value most likely closer to 25 than 30 K. However, this
value is affected by quantum corrections and it needs a more
careful examination. This will also be addressed in a future
publication.66

3. Structure of the monolayer

The complexity of the monolayer structure makes its
description somewhat difficult and cumbersome. Neverthe-
less, there are a number of characteristics of the monolayer
that are useful to describe in detail, and this can be done with
some confidence. Some of these details are to be found in the
supplementary material and in the discussions below.

The structure factor for the
p

3 phase shows the expected
behavior for both constrained and unconstrained geometries.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814


144704-7 A. D. Novaco and J. Bavaresco J. Chem. Phys. 148, 144704 (2018)

At low temperatures, the widths of the S(Q) peaks are consis-
tent with the size of the system and show the expected decrease
in peak height and increase in peak width as the temperature is
increased and the system becomes more disordered. Total loss
of long-range order is obvious at the transition temperature to
the disordered state.35

As for the striped phase, while it is possible to generate
many stripes in the constrained geometry, it was not possible
to generate more than six to eight stripes using the uncon-
strained geometry and a system size of 20 K. The structure
factor peaks for this case, for both constrained and uncon-
strained geometries, possess strong satellites once there are
more than a couple of domain walls in the system. The pre-
sentations of the experimental data for S(Q) in Refs. 40 and 41
do not seem to show the existence of strong satellites as found
in these MD simulations. It does appear that the existence of
strong satellite peaks is inconsistent with the data since the
experimental analysis assumed that the main (parent) peaks
are the major contributors to the scattering intensity. The lack
of strong satellite peaks is an indication that even if the exper-
imental system is a SIC phase, it is not the one possessing
many stripes. The main peaks for the simulated (MD) striped
phase did show shifts from the

p
3 peak locations, although

these shifts might not have a simple relation to the “misfit”
and the main satellite peak was similar in intensity to the
parent peak. While our comparisons of the MD results with
the experimental data are more qualitative than quantitative,
these comparisons did take into consideration peak locations,
peak shapes, and peak intensities. We believe the conclu-
sion that the experimental diffraction peaks are not consistent
with the SIC phase of the BR model and are based on sound
arguments.

As would be expected, peaks for the apparently chaotic
phase show a variety of structures. Many of these are difficult to
interpret but are reflective of the disorder in the system. Some
peaks show similarities to the peaks shown in the HAS data40

associated with the SIC phase, even though the MD system
is not a striped structure. A good example of this is shown in
Fig. 1, where the domain structure shown is an example of this

FIG. 1. Domain structure for case study BR-H:20 K. The initial rotation is
2� and the temperature is 2.922 K. Each shade (color) represents a domain
of a different sublattice, while black (white) represents enhanced (reduced)
density domain walls. See Ref. 43 for details.

FIG. 2. 3D plot of S(Q) for case study BR-H:20 K. The plot is for the region
of Q-space near the (02) peak of the

p
3 xenon monolayer. The origin is at the

left corner, the x-axis is along the lower edge with 10.9  Qx  11.9, and the
y-axis is along the left edge with 6.1  Qy  7.1. The initial rotation is 2� and
the temperature is 2.922 K. The Q values are normalized by the length-scale
as discussed in Sec. II D.

chaotic phase. This figure shows the typical pattern of domains
and domain walls for these states, where the definition of the
three domain sublattices and the domain walls is to be found
in Refs. 35 and 43. This chaotic structure was generated by
initialization in a low temperature

p
3 patch configuration and

then slightly rotating the patch (by about 2�) before starting
the simulation. This system was first cooled and then heated.
It is clear that this structure is not a striped phase, but the
structure factor, as shown in Fig. 2, shows some similarity to
the experimental S(Q) as shown in Fig. 2 of Ref. 40. How-
ever, the S(Q) peaks in the simulation results are sharper than
those found in the experimental results and are also shifted in
Q-space.

FIG. 3. Contour plot of S(Q) for case study BR-U:20 K. The plot is for the
region of Q-space near the (02) peak of the

p
3 xenon monolayer. The hori-

zontal axis is Qx with 10.9  Qx  11.9, and the vertical axis is Qy with 6.1
 Qy  7.1. The initial rotation is 2� and the temperature is 2.922 K. The Q
values are normalized by the length-scale as discussed in Sec. II D.
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FIG. 4. S(Q) for case study BR-U:20 K. The plot is for the region of
Q-space near the (02) peak of the

p
3 xenon monolayer. The horizontal

axis is Qx with 10.9 < Qx < 11.9, and the vertical axis is Qy with 6.1
< Qy < 7.1. The initial configuration is striped and the temperature is
31.56 K. The Q values are normalized by the length-scale as discussed
in Sec. II D. Note the high intensity of both the parent and main satellite
peaks.

A contour plot of S(Q) in the same region of Q-space
is shown in Fig. 3. The largest peak is about two or three
times higher than the two smaller peaks, and the peak triplet
is roughly centered near the xenon (02) peak of the

p
3 phase.

This can be compared to the S(Q) that results from a striped
phase patch with five domain walls, as seen in Fig. 4. In the
experiments, a triplet pattern was explained as an incoher-
ent sum of contributions from three wall orientations rotated
120� from the others, with the peaks being generated from the
shifted and unshifted parent peaks whose origins are the

p
3

peaks equivalent to the xenon (02) peak. Adding together three
rotated contributions of the sort found in Fig. 4 would not give
a triplet pattern.

IV. COMPARISON TO EXPERIMENT

Connections with the experimental results were investi-
gated by calculations of the static structure factor S(Q)36,43

for a selected subset of runs spaced along an appropriate
range of temperatures. These calculations were compared to
the experimental results to see if there are other possible
interpretations of those experiments. Since the BR projec-
tion is the most appropriate one for the very low temperature
range, the focus was on that projection using an unconstrained
geometry with 20 K atoms in a single patch and having
an average density of roughly 0.5⇢0. Results for the U35-H
projection are essentially the same as the BR-H projection.
We explored variations in the initialization of the system
so as to generate a variety of initial structures. These vari-
ations used a series of initial rotations and initial densities
(using the unconstrained geometry) to produce initial con-
figurations of the SIC, AIC, and RIC structures. In addition,
the response of the system to changes in the corrugation was
investigated.

Simulations of the low temperature submonolayer solid
show a system with extremely narrow domain walls that tend to
zigzag in a rather haphazard and perhaps chaotic fashion.34 The
domain walls are often only two or three atoms in width, the
width varying along the length of the wall. Some stretches of
these walls exhibit wall widths which are effectively zero (that
is, domains of different sublattices directly abut each other
with a small gap). This is in marked contrast to the walls found
in the Xe/Gr system, where the domain walls have a regular
structure, are relatively wide, and are essentially of constant
width.36,43 Furthermore, the walls in the Xe/Pt system appear
to be more erratic and not as easily categorized as domain
wall models typically used in calculations found in the liter-
ature.40,67,68 In addition, the walls seem to be rather resistant
to movement (as evidenced by their propensity to stay near
their original position as the system evolves). This happens
both as the running time is increased and as the temperature
is raised. Furthermore, this occurs even when a thermody-
namic analysis clearly indicates that the state in question is
not the one with the most thermodynamically stable struc-
ture. That is, these domain walls seem to stabilize meta-stable
states, behaving as if they are pinned at low temperatures. As
the temperature is raised above 60 K, these walls then appear
to relax, causing the system to form a proper

p
3 structure

with a couple of large domains (although often surrounded
by some disorder as the temperature approaches the transition
temperature).

The prediction of the BR model for the structure of the
low temperature submonolayer is in stark contrast to both the
HAS results and the STM results.16,40,41,48 The existence of
large patches of irregular but roughly hexagonal

p
3 domains

separated by very narrow and irregular domain walls not
only generates strong, single peaks at those scattering vec-
tors Q that are coincident with the reciprocal lattice vectors
G of the substrate but produces the triplet pattern shown in
Fig. 2 for those Q not near such G. However, the scatter-
ing pattern for the BR model, even with thermal smooth-
ing, does look different from that shown in the experimen-
tal work of Kern.40 Furthermore, these differences exist for
both the “chaotic hexagonal” phase and the “chaotic striped”
phase.

If one compares the S(Q) for the “chaotic hexagonal”
phase of the BR model to the experimental results, it is pos-
sible to see that the peaks in the vicinity of those Q vec-
tors that are near corresponding reciprocal lattice vectors of
the surface (for example, Q ⇡ ⌧(1̄2) ⇡ G(01)) are actually
not that different from the experimental results. The cal-
culations show a strong, single peak at the location of the
appropriate G vector (that is at the corresponding

p
3 phase

⌧ vector). The Kern data show a strong peak with (what
is described as) a very weak and indistinct doublet. Here,
the data are really not that different from the MD simula-
tion. However, for the scattering peaks near the

p
3 phase

⌧(02) vector, the BR model shows a triplet centered about that
location, while the Kern data show a triplet displaced signif-
icantly outward from this location. Furthermore, the peaks
in the BR calculation are more distinct, possessing signifi-
cantly smaller widths, than those found in the experimental
results.16,40,41,48
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Now, if one would instead examine the “chaotic striped”
phase, looking at both the BR model and the Kern data, com-
paring S(Q) for the “chaotic striped” phase to the experimental
results, what is true of the “chaotic hexagonal” phase with
regard to scattering near the Q ⇡ G vectors is also true for the
“chaotic striped” phase. Namely, the only significant intensity
is at the corresponding

p
3 parent peak. However, for scattering

near other peaks (like ⌧(02)), the BR “chaotic striped” phase
would show the pattern in Fig. 4 added (incoherently) with two
others rotated by ±120�. This appears to be inconsistent with
the Kern experimental results since, given the strong satellites
shown in Fig. 4, the calculated peaks would not form a simple
triplet pattern.

Since the predictions of the BR model, even with appro-
priate thermal smoothing, appear to be at odds with the exper-
imental results, questions about just how the BR model could
be deficient are relevant. In Ref. 35, a similar problem arose
when comparing the experimental melting temperature and the
prediction for the BR model. This same problem arose in the
determination of the mobility of a xenon atom on the Pt(111)
surface by quasi-elastic helium atom scattering (QHAS).69 It
does appear that there is a need for further smoothing of the
corrugation beyond the thermal smoothing presented here. It
can be suggested that this additional smoothing might be due
to the thermal motion of the Pt(111) surface (see the supple-
mentary material). But there also exists the possibility that the
model corrugation is simply too strong and (or) the well width
in the surface-normal direction is too narrow. Perhaps even at
the very lowest temperatures, the basic BR model parameters
need tweaking. With this in mind, we can examine the effects
of lowering the corrugation along the same lines as done in
Ref. 35.

For temperatures around 60 K, the BR value for U (10) is
reduced (in magnitude) by thermal (and quantum) smoothing
to about 28 or 29 K as can be seen in Table VI. This reduction
is not sufficient to alter the scattering pattern in any signif-
icant way. However, if the value of U (10) were in the range
from about 25 to 20 K, there is a significant shift in the
position of the triplet surrounding the ⌧(02) peak. In particular,

FIG. 5. Domain structure for case study U20-H:20 K. The initial rotation is
2� and the temperature is 45.26 K. Each shade (color) represents a domain
of a different sublattice, while black (white) represents increased (reduced)
density domain walls. See Ref. 43 for details.

FIG. 6. 3D plot of S(Q) for case study U20-H:20 K. The plot is for the region
of Q-space near the (02) peak of the

p
3 xenon monolayer. The origin is at the

left corner, the x-axis is along the lower edge with 11.0  Qx  13.0, and the
y-axis is along the left edge with 5.75  Qy  7.75. The initial rotation is 2�

and the temperature is 26.4 K. The Q values are normalized by the length-scale
as discussed in Sec. II D.

while there is still a triplet form to the pattern, the center of
that pattern moves “outward” and beyond the

p
3 phase ⌧(02)

position. The spatial domain pattern is similar to that shown in
Fig. 1, but the domains are smaller and rather more irregular
as can be seen directly in Fig. 5 (which is for the U (10) = 20 K
corrugation).

The S(Q) for this state (at T = 26.4 K) is shown in Fig. 6.
The peaks in S(G) are lower and less distinct than in the BR
case discussed above. Furthermore, the triplet is moved out-
ward in Q space and shifted relative to the xenon

p
3 (02)

peak instead of being centered on that peak location, as it is in
the BR case. In fact, these peaks are quite similar to those in
the experimental data.40 It must be noted that there are many
cases where the scattering pattern is different from those shown
here, often being more disorganized and without sharp peaks
as would be expected for a system with significant disorder.
In particular, the state of the system appears to be sensitive to
the history of state formation. This would be expected if the
system is chaotic in nature, but the existence of this sensitiv-
ity in a MD simulation is not proof that the system is truly
chaotic.

While structure factor calculations were not carried out
for the “chaotic striped” phase with |U (10)| < 30 K, an analysis
using a different technique36,59,70 suggests that S(Q) for such
states would still produce noticeable satellites. This would
likely conflict with the patterns observed in the Kern exper-
iments as discussed above. It should be noted that reducing
the corrugation so that U (10) ⇡ 20 K does not eliminate the
meta-stability and “chaotic” behavior. However, doing so both
increases the domain wall width and decreases the temperature
range of stability for the

p
3 phase.

V. SUMMARY AND CONCLUSIONS

Our molecular dynamics simulations of submonolayer Xe
on Pt(111), using the Barker-Rettner model combined with

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
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the HFD-B2 Xe-Xe interaction as modified by the McLach-
lan interaction, show that the ground state of this model is
the
p

3 structure. Furthermore, these BR model simulations
clearly show that the equilibrium low temperature, low pres-
sure phase is this same

p
3 phase. However, below approxi-

mately 60 K, this phase is susceptible to meta-stable chaotic
disorder, creating domains of various irregular shapes and pro-
ducing structure factors similar in nature to those of the HAS
experiments.40 The interpretation of the HAS scattering as
confirming the existence of a striped phase as the low tem-
perature structure may be a misinterpretation of the actual
situation. Finally, these simulations show that this disorder
anneals out as the temperature is raised above the 60 K mark,
driving the chaotic system back into the

p
3 structure. It is

from this higher temperature
p

3 phase that the system melts
(disorders).35

The susceptibility to chaotic behavior is exhibited by a
mix of disorganized hexagonal and striped domains in the
same sample. The resulting S(Q) near the xenon {10} and
{20} peaks shows a triplet pattern that is similar in structure
to that seen in HAS experiments.32,40,41 On the other hand,
for S(Q) near the xenon {11} peaks, the MD analysis shows
essentially no difference between reflections from any of the
examined phases (the

p
3, the HIC, the SIC, and the chaotic

structures). All phases show a strong peak at the platinum 10
reflections, namely, just those found in the

p
3 phase. This is

understandable since all these structures have the vast major-
ity of the xenon atoms at or close to adsorption sites with, at
most, only a few percent of these atoms in very narrow and
irregular placed domain walls. Given that the

p
3 xenon {11}

peak set is coincident with the platinum {10} peak set, all the
xenon atoms at adsorption sites reflect in phase with each other
at these values of Q. These results contradict statements in
Ref. 40 about the analysis of the scattering from the xenon{11}
peaks of the SIC structure, at least as it could be interpreted
for the submonolayer case. Furthermore, the simulations of the
model SIC phase show strong satellites in S(Q), which contra-
dicts that same experimental analysis for the {10} and {20}
peaks.

There are, however, some problematic issues associated
with the BR model, especially at higher temperatures. In par-
ticular, comparing simulation results to experimental results,
there seems to be more smoothing of the corrugation with
increasing temperature than can be accounted for within this
model. The effect of this reduced corrugation on the thermo-
dynamic behavior is examined in detail in Ref. 35, but this
behavior is also found in quasi-elastic helium atom scattering
(QHAS) experiments which can examine the diffusion of a Xe
adatom on the Pt(111) surface.69 The quasi-two-dimensional
approach we used, combining a classical treatment of the
monolayer dynamics parallel to the surface with a quantum
treatment of the dynamics perpendicular to the surface, does
help mitigate these problems, but it does not fully resolve all the
issues. Our investigation of the thermodynamic and structural
properties, comparing our calculations to previous simulations
and known experimental results of this system and other sys-
tems, indicates that there is more thermal smoothing near the
melting temperature than can be accounted for by current mod-
els. This is in stark contrast to other systems, such as Xe/Gr,

where the same approach does an excellent job of explaining
the experimental results.36

Further experimental studies are important for progress
in the understanding of this system. In particular, work that
can better examine the very low temperature corrugation of
this system and probe the Xe/Pt potential energy surface is
needed. For example, a careful experimental study of single-
particle diffusion from very low temperatures up through melt-
ing, combined with corresponding simulations which include
quantum corrections at low temperatures, could go a long way
to the determination of the corrugation and its dependence on
temperature. Improved ab initio studies of the xenon-platinum
potential energy surface would be very useful, although the
precision needed may be beyond the limits of current theoreti-
cal analysis.19 Calculations of the effects of the thermal motion
of the Pt(111) surface on the behavior of the xenon monolayer
could be critical to the understanding of this problem. It is also
important to do an experimental study of the effects of sur-
face dynamics on the surface corrugation as the temperature is
raised. It is possible that the dynamics of the platinum surface
significantly influences the dynamics of the xenon monolayer
at high temperatures by significantly smoothing the surface
corrugation. Also important is the study of similar systems,
namely, heavy noble gases adsorbed on strongly corrugated
substrates having dilated adsorbate lattices. One such example
could be submonolayer xenon adsorbed on Ru(001).71 Fur-
thermore, the structural analysis of the scattering from these
systems must include an examination of possible chaotic states
of the sort observed in these simulations.

The BR model does a good job of explaining the low
temperature behavior of the xenon monolayer on the Pt(111)
surface. However, while it is able to reproduce a significant
collection of data, it is clear that getting the transition tem-
perature for melting right and explaining the scattering data,
the STM data, and the QHAS data requires alterations in or
enhancements to the BR model at high temperatures. While
reducing the corrugation does effect the phonon spectrum,42

a simple SCP calculation shows that reducing the corruga-
tion from the BR value to U (10) ⇡ 20 K reduces the in-plane
zone-center phonon gap by about 25% and produces a small
increase in the maximum in-plane phonon energy.66 However,
these shifts look to be borderline tolerable as to the maintain-
ing of the agreement with the previously calculated phonon
energies and the experimental data.42,61 For all its many suc-
cesses, the BR model seems to need improvements of the sort
discussed here.

SUPPLEMENTARY MATERIAL

See supplementary material for additional justifications,
explanations, calculations, figures, and tables. This material
includes discussions of (1) additional background information
about this system; (2) details of the simulation methodology;
(3) details of the free energy analysis; (4) details on the calcu-
lations of the Q2D Fourier coefficients; (5) calculations of the
binding energies and heats of adsorption; (6) RMS vibrational
analysis of the xenon monolayer; (7) estimates of the effects
of the platinum surface dynamics; (8) additional results and
discussions of the simulations.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-027814
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TABLE VII. Equivalence mapping of the reciprocal lattice indexing used in
other sources.

Lattice type Kerna Maps into This work

Platinum (1̄1̄) () (10)
Xenon (1̄2̄) () (11)
Xenon (1̄1̄) () (10)
Xenon (2̄2̄) () (20)

aAs described in Ref. 39.
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APPENDIX: DIFFRACTION PEAK INDEX MAPPINGS

We are using the convention that the primitive transla-
tion vectors for both the xenon lattice and the Pt(111) lattice
are placed 120� apart. Thus, the primitive reciprocal lattice
vectors for both lattices (⌧ for the xenon and G vectors for
the platinum) are 60� apart. As a result, the magnitude of
G(11) = G(10) + G(01) is

p
3 times the magnitude of G(10), and

the same is true for the ⌧ vectors. This is in contrast with
some of the referenced experimental work, where the opposite
convention is used. Furthermore, there is a 30� rotation and
sometimes an inversion between the reciprocal lattices used
here and some of the experimental references. In addition,
the SIC experimental data are an incoherent sum of peaks
from three different orientations of the SIC walls, while the
S(Q) peaks presented here are those of a system with a sin-
gle orientation. Therefore, some care must be exercised when
comparing the simulation results to the experimental ones.
In particular, the convention used here for the reciprocal lat-
tice vector indexing differs from that used in the experimental
work of Kern and co-workers.39 This work uses an angle of
60� between the primitive reciprocal lattice vectors and the
experimental work uses an angle of 120�. Table VII shows the
mapping between the indices used in this work and that used in
Ref. 39.
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I. INTRODUCTION

We investigate whether chaotic behavior at low-
temperatures can be present in a case of physical ad-
sorption; proposing that such is the case for Xe/Pt, con-
trary to the common wisdom for this system.1 This xenon
monolayer exhibits very narrow domain walls with little
distortion in the ideal placement of the xenon atoms in
the two domains on either side of the wall; such behavior
being driven by the strong corrugation and the dilated
adlayer lattice structure of this system. It is this charac-
teristic that most likely generates the criteria needed to
drive chaotic behavior in this system. The domain wall
behavior in this system is consistent with these walls be-
ing pinned, at low temperature, by the Peierls force; this
pinning force then being significantly reduced as the tem-
perature of the system is increased, causing the system
to become more ordered.
The points just raised imply that a re-examination of

this system is appropriate. Given what we now know of
the mutual interaction between Xe gas atoms, the modifi-
cation of this interaction by the substrate surface, and the
interaction between these atoms and the Pt(111) surface,
this re-examination is both justified and timely. Further-
more, today’s computational capabilities allow the sim-
ulation of much larger systems then what was possible
in the past. In the case of Xe/Pt, this is important be-
cause some of the more interesting effects shown here
and elsewhere2 would not appear in the small systems
examined in the older works.
This supplement contains detailed discussions of the

methodology of the simulations, the explanation of the
free energy analysis, details of the calculations for the
Q2D Fourier coefficients, calculations and results for the
RMS vibrational amplitudes of the xenon adatom, dis-
cussion of the effects of platinum surface dynamics on
the dynamics of the xenon submonolayer, additional de-

a)E-mail: novacoad@lafayette.edu
b)E-mail: jessica.bavaresco@oeaw.ac.at

tails of the results, and additional discussions of these
results.

II. SIMULATION METHODOLOGY

The basics of the MD simulation are the same as
those in Refs. [3 and 4], using essentially the same code
with mostly the same set of parameters. As in those
works, we examine both the constrained geometry (a
single phase filling the simulation box) and the uncon-
strained geometry (an isolated patch surrounded by va-
por). Constrained-geometry simulations are used to de-
termine the stable low temperature phase for the classical
system, and to examine the system in a simple context
(the constrained geometry having only one phase present
at any given temperature).2 These simulations of the con-
strained geometry are also useful in the interpretation
of the high temperature behavior of the unconstrained-
geometry simulations.2 Simulations of the unconstrained-
geometry are carried out to examine both the thermal
behavior and the structural properties of the submono-
layer patch. The system sizes chosen were different from
Ref. [3], with the largest system reported here being a
constrained geometry with 65536 adatoms (65K). Most of
the simulations of the unconstrained geometry contained
20064 adatoms (20K). Smaller systems having 4096 and
16384 adatoms (4K and 16K) were also used to check for
size dependencies.
The simulations were carried out using scaled equa-

tions with a length scale of 4.3656 Å, an energy scale of
282.8 K, and a time scale of 3.262 ps. The scaling, time
step, force truncation details, nearest-neighbor shells, cri-
teria for determining equilibrium, and the criteria for av-
eraging are the same as the earlier works cited. The
main difference in the behavior of these MD simulations
compared to those referenced above, is the existence of
significant meta-stability in these results that did not ap-
pear to occur in the previous work (except for the largest
corrugation reported in that work). Relaxation times for
the Xe/Pt simulations are much longer than those found
for Xe/Gr, which we attribute to the stronger corruga-



2

tion in the Xe/Pt system. The average densities for the
unconstrained geometry varied over a wider range in this
study then in Ref. [3]. Here the lower bound is 0.14ρ0
and the upper bound is 0.67ρ0, with the typical simula-
tion carried out at ≈ 0.50ρ0.

The data was collected in blocks of 1000 time steps
(32.6 ps), each time step being 0.01 scaled time units. In
most cases, blocks 400–500 (13.04–16.30 ns) were used to
calculate the thermodynamic functions as before. Some
selective runs were carried out to nearly 1500 blocks
(48.90 ns). Structure factor calculations typically used
blocks 500–600 (16.30–19.56 ns), selecting about 25 to 50
configurations, uniformly spaced in time, from that set of
blocks. The determination of the stable state is obtained
by initializations of the system in various structures and
running until the run has stabilized. Equilibrium data
was typically taken only after this stabilization. A given
simulation was typically run for at least 13.0 ns before
being either heated or cooled to the next energy. Each
run was then continued until equilibrium was attained.
The usual tests were performed to determine if a given
run has stabilized.5

The starting point for the
√
3, AIC, and RIC uncon-

strained configurations is a hexagonal patch centered in
the simulation box. The initial patch density was ad-
justed by altering the lattice parameter of the patch, and
RIC configurations were generated by initial rotations of
the patch away from the

√
3 orientation. The SIC initial-

izations (for the unconstrained systems) were rectangu-
lar patches with the

√
3 orientation, commensurate with

the platinum structure in the xenon [1, 0] direction but
compressed in the perpendicular direction. The striped
structures so generated typically had 2 to 8 domain walls.
Attempts to initiate unconstrained striped configurations
with more than 8 walls result in systems that are mechan-
ically unstable and collapse into structures that are very
disordered and have higher free energy at a given tem-
perature than the

√
3 structure. Attempts to initialize

an unconstrained case with too high a patch density also
produces unstable runs that abort with a corresponding
of loss of energy conservation. The sensitivity of the re-
sults to system size was tested by doing simulations of
the constrained geometry for 4K, 16K, and 65K sizes.
There is little observable difference in the thermodynam-
ics generated for those cases when far from the melting
transition, although this is not strictly true, as explained
in the Sec. VIIIA, for ψ0 near the melting transition.
We did not study the approach to equilibrium near the

melting transition carefully, but we did carry out exten-
sive testing of the sensitivity of these results to the ini-
tialization of the system. These initializations involved
changing the density, the orientation of the adatom layer
relative to the surface (the rotation angle), and the geom-
etry of the domain walls so generated (striped vs hexag-
onal). The relevant results are described in Ref. [2], in
the main article, and here in Sec. VIII.
To test the convergence of the S(Q) results, calcula-

tions were performed using the
√
3 structure, a 20K sys-
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FIG. 1. Points A and B, both at a temperature T1, are termi-
nal points for the corresponding paths. Point P , the common
endpoint for both paths, is at a temperature T0. Both paths
describe constant area processes along lines of presumed sta-
ble or meta-stable states.

tem, and configurations from blocks 600 to 1100. These
calculations show that, in general, it is only necessary to
use from 25 to 50 configurations, uniformly spaced over
about 100 blocks, to obtain good statistics. A larger
sample set is not necessary for a reliable S(Q) calcula-
tion. Peaks for the (10), (01), (1̄1), (2̄1), (1̄2), (02), and
some others equivalent to these were generated and ex-
amined. Calculations were also carried out for selected√
3 and striped structures of the constrained geometry.

The results were as expected.

III. FREE ENERGY ANALYSIS

Consider two paths in the energy-temperature plane,
as shown in Fig. 1, that have a common point P hav-
ing a temperature of T0. The combined path (A plus B)
describes a constant area process which both starts and
ends at points which have a temperature of T1. Let path
A be above path B, that is path A has the higher en-
ergy at each temperature. Now assume that each path
represents a distinctly different structure for the system,
with each path being associated with a distinctly dif-
ferent region of phase space. However, at the common
point P , assume that the two paths describe a common
region of phase space, thus a common phase of the sys-



3

tem. Assume that each path represents a meta-stable
system that, in the spirit of a restricted ensemble anal-
ysis, can be described by equilibrium thermodynamics.
Also, allow for the possibility that one branch is actually
the stable equilibrium state of the system. The question
is: which of the two paths represents the stable (or more
stable) branch?
Consider a path which traverses path B from T1 to T0,

then moves along path A from T0 to T1. Start with the
identity

fA − fB = (ϵA − ϵB)− T1 (sA − sB)

where f , ϵ, and s are the Helmholtz free energy, the inter-
nal energy, and the entropy (each per particle). We assign
points B and A to represent the corresponding endpoints
of the path first along path B through P and then along
path A, Now, if ca is the specific heat (per particle) at
constant area, then along either path we have

ϵf − ϵi =

∫ Tf

Ti

dT ca and sf − si =

∫ Tf

Ti

dT
ca
T
.

Using the relations above, we generate a simple relation
between the free energy at point A and that of point B,
namely:

fA − fB =

∫ T0

T1

dT

[

1.0−
T1

T

]

[

cBa − cAa
]

, (1)

where the superscript on ca refers to the path taken. The
case shown in Fig. 1 illustrates the case most often found
in these simulations. In particular, the path with the
higher energy also has the smaller specific heat (smaller
slope) with the paths merging at some higher tempera-
ture. Thus in Eq. (1), we have T1 ≤ T and cBa > cAa ,
which implies that fA > fB and the lower path is not
only the one of lower energy, it is also the one with the
lower free energy. Conclusion: the lower path is the more
stable one when T1 < T0.

For the T1 > T0, imagine the paths in Fig. 1 inverted
about point P , with path B possessing the higher energy,
but still possessing the larger ca. Repeating the analysis
for this case, the end result is similar to Eq. (1), but has
a sign change. The result is:

fA − fB =

∫ T1

T0

dT

[

T1

T
− 1.0

]

[

cBa − cAa
]

. (2)

With T1 > T0 and cBa > cAa : fA > fB . Therefore, path
B is still the stable path. That is, for T1 > T0, the upper
path is now the stable one. These arguments are similar
to those found in Ref. [6], starting on page 296.

IV. Q2D FOURIER COEFFICIENTS

The Q2D approach starts with the Steele expansion
of the potential energy of an atom due to the surface of

a crystalline substrate.7,8 This potential energy, denoted
by U(r, z), can be written as a Fourier series of the form:

U(r, z) =
∑

G

UG(z) exp(iG · r), (3)

where G is a reciprocal lattice vector of the two-
dimensional surface lattice (See Appendix A in the main
article for the naming and indexing conventions used). It
should be noted that the model presented here does not
depend upon the UG(z) having any particular form, only
that each be expressed in some manner that allows the
calculation of the corresponding derivatives with respect
to the z-coordinate. Therefore, it is possible to use this
approach in conjunction with any potential energy model
for the adatom-substrate interaction and not just for the
site-site model that is used in this communication.
The Fourier components that define the corrugation of

the surface are dependent on z, so if the adatom were to
move along the surface following the path of minimum
energy, it would move perpendicular to the surface as
it moves parallel to the surface. If this is treated as a
purely classical problem, there are a couple of ways to
proceed. The simplest method, and the one often used,9

is to find the minimum barrier to translation moving from
one adsorption site to the next and ascribe this to the
simplest form of Eq. (3):

U(r) = U(10)

∑

G

exp(iG · r), (4)

where U(10) is a constant, and the sum overG is now only
over the six reciprocal lattice vectors equivalent to G(10).
A somewhat improved (but more complicated) approach,
is to first calculate (for hexagonal lattices) four specific
values from Eq. (3); these being the minimum value of
U0(z) and the minimum potential energies over the Atop
site, the hollow site, and the bridge site. These energies
are denoted by U0, UA, UH and UB respectively with the
corresponding z-value denoted by a corresponding zopt.
From these four energies, the three independent Fourier
coefficients U(10), U(11), and U(20) can be obtained if it is
assumed that the higher-order coefficients can be ignored.
For the simple hexagonal lattice (i.e. Pt(111), we find:

U(10) =5δUA/72− δUB/8− δUH/9 (5a)

U(11) = (δUA + 2δUH)/18 (5b)

U(20) = (δUA + 3δUB)/24 (5c)

where δUA ≡ UA − U0, δUB ≡ UB − U0, and δUH ≡
UH −U0. Similar equations hold for the open-hexagonal-
net lattice (i.e. graphite) with the exchange of δUA with
δUH . For Xe/Pt, direct calculations show that the second
and third coefficients are much smaller than the first.
A third approach is a perturbation calculation for the

displacements of the xenon atoms in the z-direction, us-
ing a Fourier series expansion for the optimum z-position
and a Taylor series expansion of the UG(z) to second or-
der. It is then possible to define effective 2D Fourier
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coefficients ŨG and easily show that:
∑

G1

Uzz
G−G1

(z0)ZG1
= −Uz

G(z0) (6a)

and

ŨG ≡ UG(z0) +
1

2

∑

G1

Uz
G−G1

(z0)ZG1
(6b)

where the ZG are the Fourier amplitudes of the displace-
ments in the z-direction relative to z0 and the Uz

G
and

Uzz
G

are the first and second derivatives of the UG(z).
The expansion point z0 is the z-position of the minimum
in U0(z).
The quantum projections corresponding to the first

two methods use similar ideas to the corresponding clas-
sical projections, but assume that the z-dynamics is de-
scribable by wave functions that are products of single
particle wave functions in z, each with some zopt for its
central positions and having widths that depend upon
the location of Ψ⊥. This approach treats the dynamics
perpendicular to the surface with a SCP approximation
having (nearly) flat (constant frequency) phonon modes
polarized perpendicular to the surface and uncoupled to
the in-plane phonon modes.5 The parameters that de-
fine the corresponding positional Gaussian distributions
are determined from the minimization of the contribu-
tion they make to the total energy (at zero tempera-
ture) or the free energy (at finite temperature) of the
system. The potential energy terms in Eqs. (5) are re-
placed by the corresponding averages of these potential
energies over the corresponding Ψ⊥ Gaussians. The z-
positions and widths of these Gaussians are determined
self-consistently, in the spirit of standard SCP calcula-
tions, as described and implemented in Ref. [10]. Thus
the quantum treatment of the energies in Eqs. (5) in-
volved the average over both z and r coordinates of these
terms as described in Ref. [10].

V. BINDING ENERGIES AND HEATS OF
ADSORPTION

Connecting the heats of adsorption to the binding en-
ergy of a adatom to a given substrate requires a model for
the thermodynamics of the monolayer. Here we use two
rather simple but quite adequate models. The connec-
tion being used between the isosteric heat of adsorption
qst and the theoretical binding energy ϵ0 is either:

qst =
3

2
kT + ϵ0 (7a)

or

qst =
5

2
kT + ϵ0 (7b)

where T is the absolute temperature. The first equation
is obtained by using the standard connection between

qst and the chemical potentials of both 2D and 3D ideal
gases (see Ref. [9], page 251 and Ref. [11], page 157). For
this model, the assumption is that the energy consists of
the binding energy of the adatom to a flat surface plus
the kinetic energy contribution from an ideal, classical
2D gas. Thus, the binding energy ϵ0 is just −Ez, the
negative of the energy associated with the z-coordinate
using only the U0 term. Proper inclusion of the effects of
the corrugation should increase the binding energy and
isosteric heat estimates. The second equation is that of a
3D ideal gas in contact with 2D lattice gas of 3D oscilla-
tors placed on random surface adsorption sites. Here,
ϵ0 is the SCP energy of isolated, 3D Einstein oscilla-
tors subjected to the full BR model interaction (but no
xenon-xenon interactions).5,10 For this model, the bind-
ing energy includes contributions from all three energy
terms: Ez, Exy, and Exyz. These are calculated using
a SCP treatment of N identical, isolated, anisotropic,
3D Einstein oscillators. For both theoretical models, the
inclusion of the mutual interaction between the xenon
adatoms should increase both ϵ0 and qst. While these
are simple physical models, they should give acceptable
estimates of the monolayer thermodynamics.

VI. XENON RMS VIBRATIONAL AMPLITUDES

One approach to the determination of the corrugation
that was explored is the calculation of the RMS ampli-
tude of the in-plane vibration of the

√
3 phase. This value

has been determined experimentally,12 and can easily
be calculated from theoretical models. The calculation
based upon the MD simulation uses the same analysis as
a calculation of the diffusion constant, mainly calculating
the average (over t0 and all atoms) for the mean squared
displacement:

⟨(r(t0 + δt)− r(t0)) · (r(t0 + δt)− r(t0))⟩ , (8)

and examining this expression as a function of the time
shift δt. If this expression saturates as a function of δt,
then there is no diffusion and the saturation value (ob-
tained by an average over δt for large δt values) is related
to the RMS vibrational amplitude. In particular, if δr
is the 2D displacement from the equilibrium point and
the dynamics of r is that of a 2D isotropic oscillator
with random initial positions, expression (8) is equal to
2 ⟨δr · δr⟩, or four times the square of the RMS ampli-
tude of vibration However, if there is diffusion, then the
quantity in expression (8) has a asymptotic linear de-
pendence on δt with a slope that is proportional to the
diffusion constant.
For the BR:64K case study, diffusion is absent for

T ≤ 101 K. However, for the U25-H:20K case study, dif-
fusion starts to be a problem at a temperature T ≈ 50 K,
and thus the estimated RMS amplitude near that tem-
perature is suspect. Unfortunately, in this system, both
the MD and the SCP5 results indicate that the in-plane
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TABLE I. Parallel and perpendicular RMS amplitudes of vi-
bration for

√

3 xenon on the Pt surface. The temperatures T
are in kelvin and the vibrational amplitudes are in Å.

Source T Parallel Perpendicular
Diehla 80 0.23 0.17

110 0.35 0.17
MDb 29 0.17 —

46 0.21 —
88 0.29 —
101 0.31 —

MDc 33 0.20 —
52 0.25 —

Q2Dd 80 0.25 0.13
110 0.29 0.16

a Experiment: See Ref. [12].
b This work: Case study BR:64K.
c This work: Case study U25-H:20K.
d SCP theory using the full BR model as in Refs. [5 and 10].

RMS amplitude is relatively insensitive to the corruga-
tion. Given that this RMS amplitude was difficult to de-
termine with high precision in the LEED experiment,12 it
was not possible to use this approach to narrow the range
of possible values for the corrugation. The experimental
and theoretical values are listed in Table I, and the agree-
ment is within the experimental uncertainty. We inter-
pret the MD and SCP results to be an indication that the
in-plane vibrational amplitude is dominated more by the
xenon-xenon interaction and less by the surface corruga-
tion. The theoretical perpendicular values are calculated
by the quantum approach described in the main article.

VII. EFFECTS OF PLATINUM DYNAMICS

The main article discusses mechanisms that could re-
duce the corrugation beyond that found with the projec-
tion models presented here. One such mechanism is the
thermal motion of the platinum surface, which would rea-
sonably be expected to be more important at higher tem-
peratures since higher temperatures would imply larger
amplitude oscillations of the surface. A very simple esti-
mate of the order of magnitude of such an effect can be
made by estimating the size of the surface normal motion
of the platinum and using that to estimate the possible
variation in the corrugation. The surface modes of plat-
inum with a xenon monolayer have been examined, and
these modes show a strong, sharp peak in the platinum
response (associated with the surface normal motion) at
a frequency such that h̄ω = 185.6 K.13 If this is used
in a simple model, the one-dimensional SHO, then the
RMS deviation in the z-position of the platinum surface
is given by the equation:

δz2rms =
h̄

2Mω
coth(0.5βh̄ω) (9)

where M is the platinum atomic mass, β is the in-
verse temperature, and ω is the platinum response fre-
quency. For a temperature of 10 kelvin, this estimate
gives δzrms = 0.026 Å while at 120 kelvin it gives 0.032 Å.
For comparison, the shift in zopt as the xenon atom
moves laterally over the platinum surface barrier is about
0.10 Å, larger but not orders-of-magnitude larger than
the δzrms at T = 120 K. Perhaps more relevant, the in-
crease in the zopt for a xenon adatom at the Atop site,
as the temperature is raised from 0 to 100 K, is about
0.05 Å, and this produces a 20 % decrease in the effective
corrugation of the surface. Finally, simply recalculating
the UG after increasing zopt by 0.04 Å reduces the corru-
gation by about 7 %. While the δzopt shift is small, its ef-
fects might not be completely negligible at the transition
temperature as judged by comparison to other smooth-
ing effects. Furthermore, motion of the Pt surface could
prevent the xenon atoms from maintaining the optimal
z-distance from that surface, thus further reducing the
effective corrugation. It is not unreasonable to expect
further smoothing of the corrugation due to this effect,
but how much is not possible to determine without ex-
amining the dynamical coupling between the adlayer and
the substrate. A robust argument can be made that this
dynamical coupling could play an important role in deter-
mining the melting temperature,14 but this needs more
investigation using both theory and experiment.

VIII. ADDITIONAL RESULTS AND DISCUSSION

Below about 60 K, different initializations did produce
different final results, often generating distinctly different
structures and causing small shifts in the thermodynamic
functions. However, these low temperature runs appear
to merge (as they were heated above approximately 60 K)
into a common set of thermodynamic values with similar
(although not identical) structures. The exact tempera-
ture at which this happens does vary from case study to
case study. Cooling from a state of uniform gas produced
the same hysteresis as found in Ref. [3].

A. Constrained Geometry

Results for system sizes 64K, 16K, and 4K show es-
sentially the same total energies at corresponding tem-
peratures. The differences (which are of the order of 0.1
kelvin) are well within the statistical noise. The same is
true for ψ6, with any variation due to system size being
within the noise of the data as shown in Fig. 2.
The drop in ψ0 as the transition is approached from be-

low, as seen in Fig. 3, is far sharper than that for ψ6. This
is consistent with ψ0 likely being the more appropriate or-
der parameter to describe this order-disorder transition.2

Furthermore, ψ0 does show a variation with system size
in the tail of the curve just above the transition, as illus-
trated by Fig. 3. Postulating that ψ0 is the appropriate
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The Hexatic Order Parameter: Size Dependence
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FIG. 2. The hexatic order parameter of three case studies,
illustrating the size dependence for constrained geometries.

order parameter for this system, this sensitivity is to be
expected.2 The insensitivity of ψ6 to system size, and its
more gradual drop to zero with increasing temperature,
implies that it is not likely the most appropriate order
parameter for this transition.2

An examination of the ground state of the constrained
geometry was carried out for the BR projection because
it has the more appropriate corrugation for very low tem-
peratures. The classical ground-state energy is obtained
by an extrapolation of the finite temperature total en-
ergy to zero temperature.4 As an example, comparisons
for the BR projection using a system size of 64K and ini-
tial states of the

√
3, AIC, and SIC structures, show that

the stable, zero pressure ground state is the
√
3 phase.

Figure 4 shows a plot of the ground-state energy of the
AIC and SIC phases as a function of inverse density. It
is clear that the

√
3 structure is the stable zero pressure

phase. At finite misfits, the AIC phase is decidedly pre-
ferred to the SIC phase except for small misfits (having
scaled densities > 1.00 but < 1.003). For these small
misfits, the difference in energy between the AIC state
and the SIC state is zero within statistical uncertainty.
It is reasonable to assume that these small differences
between the energies of the AIC and SIC phases could
be an important driver for the “chaotic” behavior of the
domain structure that is observed in this system. Simi-
lar results are found in the unconstrained case studies as
shown in Sec. VIII B below.
Preliminary calculations of quantum effects (using a

Net Domain Phase Order Parameter: Size Dependence
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FIG. 3. The NDP order parameter ψ0 of three case studies,
illustrating the size dependence for constrained geometries.
The initialization is the

√

3 phase for all.
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Total Energy: Phase Comparison
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FIG. 5. The total energy of the case studies for BR-X:20K,
comparing initializations in the

√

3, RIC, and SIC initial
states for the unconstrained geometry. They all have essen-
tially the same average density of 0.5ρ0, and only the heating
data is shown.

SCP approach for large clusters) indicate that these con-
clusions are not substantially altered by such effects and
that the basic behavior described here also holds for low
temperatures when quantum effects are included.15 The
preliminary calculations show free energy curves that
look much like the energy curves in Fig. 4.

B. Unconstrained Geometry

The initialized structures appear to be, after some ini-
tial relaxation into a quiescent state, quite stable. How-
ever, different initializations often stabilized with differ-
ent structures and even different energies existing at the
same system temperature. This is taken to be an in-
dication that the system settles into meta-stable states
which have long lifetimes on the scale of the MD sim-
ulation. Since the stable state at finite temperature is
determined by the lowest free energy, the arguments in
Sec. III are used to determine the most likely stable state
at finite temperatures.
Figure 5 compares the total energy of unconstrained√
3 and corresponding meta-stable RIC and SIC initial-

izations for the BR-X:20K case study. The
√
3 initializa-

tion shown starts with a hexagonal patch having a single
domain and minor imperfections on the boundary of the
patch. The RIC initialization starts with a hexagonal

patch of the
√
3 initialization, but then rotates it by 2◦

counterclockwise before starting the simulation. The SIC
initialization shown starts with a rectangular patch hav-
ing almost equal sides and 8 stripes (which are roughly
parallel to the [1, 1] direction of the xenon lattice). It
can be seen that the

√
3 points are lower in energy than

either of the IC data sets. However, note the closeness of
the SIC and the

√
3 data sets, even though the SIC struc-

ture was initialized with the maximum number of stripes
possible (8) without mechanical instabilities causing the
simulation to abort.
At some temperature below 100 K, the three separate

data point sets merge into a single set of points exhibit-
ing a

√
3 like structure, thus presumably satisfying the

conditions set forth in Sec. III. Using the free energy
analysis of that section, it appears that the

√
3 phase is,

in this temperature range, the most stable state of the
three. However, the SIC phase is very close to the

√
3

phase in (free) energy, implying that the SIC can easily
compete with the

√
3 phase. The MD results do im-

ply that not only is the
√
3 phase the ground state of

this system, it is always stable against both the RIC and
SIC phases until it disorders (melts).2 The existence of a
stable

√
3 phase up to the disordering (melting) transi-

tion also occurs for corrugations more appropriate to the
higher temperatures in this figure. However, the temper-
ature of the transition from the chaotic state to the

√
3

phase does depend upon the value of the corrugation.2

Stability comparisons between different initializations
were carried out only for the heating-cycle data set be-
cause the cooling-cycle data exhibits hysteresis if the sys-
tem is cooled from a disordered state. For example, con-
sider a

√
3 initialization started at a very low tempera-

ture, then slowly heated past the transition to the disor-
dered state, then cooled down to very low temperatures
(close to the initial temperature). Figure 6 demonstrates
this hysteresis in the case study BR-H:20K, showing the
hysteresis effects of heating and cooling in the simula-
tions. The upper (cooling cycle) branch, which is unsta-
ble to the lower (heating cycle) one, is associated with
a collection of small patches of

√
3 structures instead of

the one large patch found in the lower branch.
In the heating process, most runs were carried out to

16.3 ns, the averages then taken over the last 3.26 ns.
For a select set of temperatures, the runs were carried
out to 35.9 ns, and the averages again taken over the
last 3.26 ns. Note that the longer runs shown in Fig. 6
are the ones slightly to the left of the main heating data
set, showing that some relaxation is still present in the
transition from order to disorder. The cooling data set
does not retrace the heating data set, the low tempera-
ture state (upon cooling) being a meta-stable structure
with “islands” of registered structures with about 100–
300 atoms per island.2 Using the arguments of Sec. III, it
is clear that the lower data set is the more stable branch
and the upper branch is less so. This is consistent with
the usual arguments used at very low temperatures where
the energy term dominates the free energy.
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Total Energy: Hysteresis Effects
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FIG. 6. The total energy for case study BR-H:20K using
the

√

3 initialization. Both heating-cycle data (lower curve)
and cooling-cycle data (upper curve) are shown. Data points
off the curve for the heating cycle data show the effects of
averaging over the time interval [32.6, 35.9] ns instead of the
usual [13.0, 16.3] ns.

Assuming the validity of the BR Model, either the
BR projection (strictly classical) or the U30 projection
(quantum corrections) would be the appropriate corruga-
tion for very low temperatures. Nevertheless, simulations
were carried out for other corrugations at these low tem-
peratures in order to test the stability of the

√
3 ground

state to variations in the corrugation. For U(10) values of
−25, −20, and −15 kelvin, all MD simulations show the
IC structure to be the ground state of the system, but
still having a stable

√
3 structure at higher temperatures

(but still below melting). If the corrugation is lowered
much below U(10) = −15 K, there is no stable

√
3 phase

at any temperature, the exact value at which this occurs
not being examined here.
The MD specific heat shows no clear sign of a tran-

sition near 60 K. If the system is initialized in the√
3 structure at low temperature, the ψ0 order parame-

ter decreases monotonically with increasing temperature,
showing smooth behavior from low temperatures to melt-
ing. The system stays in the

√
3 phase until the disor-

dering temperature is reached. However, if the system is
initialized in an IC structure at low temperature (thus
having a small ψ0 value), above 60 K there is an increase
in ψ0 with temperature.2 Some experimental papers16

claim a transition from a low temperature striped phase
to the

√
3 phase as the temperature is raised above 60 K.

For all the corrugations and initializations investigated
here, the simulations show a gradual transition from the
initial low temperature structure into the

√
3 phase at

higher temperatures, but the temperature range of this
transition does depend upon both the corrugation and
the initialization. The transition does not seem to be a
true thermodynamic transition, but rather appears to be
a gradual evolution into the

√
3 structure. However, this

apparent behavior could be a consequence of the very
long relaxation times for this system and not a reflection
of the system’s true equilibrium thermodynamics.

C. Structure of the Monolayer

Our simulation shows there is no tendency for the sub-
monolayer patch to spontaneously rotate away from the
high symmetry direction of the substrate. This behav-
ior is in contrast to that of Xe/Gr,3 and it is probably
due to Xe/Pt having a much stronger corrugation and
a dilated lattice compared to Xe/Gr. Even when the
issue is forced by the generation of a rotation in the ini-
tial state, the imaginary part of ψ6 quickly becomes very
small (about 10−2 once the system has stabilized) thus in-
dicating a near zero rotation angle.3 A small initial rota-
tion angle generates rather irregular domain shapes, the
typical size of these domains being dependent upon that
angle. However, unlike the Xe/Gr case where the whole
patch rotates to the stable angle,3 the edges of these
Xe/Pt patches remained (approximately) at the original
rotated orientation with respect to the substrate. The
adatoms in the domains simply re-position themselves to
produce local alignment with the

√
3 state orientation,

and the domain walls respond (relax) accordingly, form-
ing a chaotic, meta-stable structure.
Initial structures generated by small initial rotations

result in large domains of the
√
3 structure separated by

narrow walls (generally zero to 2 atoms wide) that run in
a irregular manner through the system. Those generated
by large rotation angles tend to have smaller domains
possessing more regular boundaries. Using the analysis
outlined in Sec. III, these various structures are found to
be thermodynamically unstable to the

√
3 state.

Initializations generated by small increases in the ini-
tial density tend to have larger domains with domain
walls that tend to be straighter but otherwise similar to
the walls in the initializations generated by a rotation.
The range of interior patch densities that can be used to
initialize an unconstrained geometry without the system
becoming mechanically unstable is quite small. While
there is no simple and reliable way to estimate the patch
density, the densest initialization had about 6 % of the
atoms in irregular, super-heavy-like domain walls with
the others in the three types of domains3 having domain
populations of roughly 25 to 50 %. Attempts to initialize
with higher patch densities result in simulations aborting
with loss of energy conservation. As stated previously,
the

√
3 patch is the thermodynamically stable state, but
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the others can be thermodynamically meta-stable, often
without any major reconstructions over 16.3 ns or longer.
Only selected runs were tested beyond this, but they too
were meta-stable.

The initial relaxation of the system often results in
domains of various geometries without a clear pattern.
When the simulation was allowed to evolve at fixed en-
ergy, the walls seem to be pinned down and rather re-
sistant to movement. This is true even when thermody-
namic analysis indicates that the state in question is not
a stable structure. Rather, these structures do appear to
be meta-stable on the time scale of any reasonable MD
simulation. We label such structures “chaotic”. This is
in marked contrast to the behavior of the walls found in
the Xe/Gr system, where the domain walls have a reg-
ular structure, are relatively wide, and are of essentially
constant width.3,4 Furthermore, the walls in the Xe/Pt
system, at least for the unconstrained cases, do not match
the description of domain walls used in many, if not most,
of the calculations in the literature on this subject.17–19

IX. EXISTENCE OF METASTABILITY

Our data shows strong evidence of meta-stability and
hysteresis. However, the difficultly of making statements
about meta-stability based upon the results of any MD
simulation is two-fold. First: The time scale of any prac-
tical MD simulation is very small on the scale of macro-
scopic experiments, the longest run in these simulations
corresponding to about 49 ns. Second: The system size
of the simulation cell is usually much smaller than the
macroscopic system. Although the justification here is a
bit sounder, as the largest simulation presented here is
comparable to the smaller experimental examples, the
size is still smaller than the best experimental cases.
Nevertheless, even with those caveats, it is clear that
the meta-stability observed here is qualitatively different
than that observed for Xe/Gr simulation.3,4 While it is
not possible to make a definitive conclusion, one can still
draw the reasonable inference that meta-stability must
be considered a strong possibility in this system. This
thought is bolstered by the fact that the free energy anal-
ysis of the MD results shows that, while the

√
3 phase is

the stable phase for the BR model (the unconstrained ge-
ometry case) below the disordering temperature, the SIC
phase (with a small misfit) is very close in free energy to
the

√
3 phase. It is then possible that any lack of ther-

mal equilibrium could drive competition between these
(and possibly other) states. In fact, we have observed
“chaotic” states which consisted of broad bands of

√
3

domains, which were much longer than they were wide,
mixed in with configurations that have a roughly hexago-
nal shape. Figure 5 in the main text is one such example.
These meta-stable structures are interesting, not only in
their own right, but because of their relation to the gen-
eral study of chaotic systems and even, perhaps, to our
understanding of the third law of thermodynamics.20,21
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